• Title/Summary/Keyword: small antenna

Search Result 562, Processing Time 0.024 seconds

Multi-Turn Circular Loop Antenna for Portable Terrestrial DMB (지상파 DMB용 다중 권선 Loop 안테나)

  • Son, Won-Kuk;Choi, Ik-Guen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.501-505
    • /
    • 2008
  • In this paper, we present a multi-turn circular loop antenna for portable terrestrial DMB. In order to satisfy the two contradictory requirements of small antenna size and high receiving capability, the proposed antenna's diameter and turns are fixed to be 4 mm and 80 turns, respectively and its quality factor $\mathcal{Q}$ is set 1 in order to have high transfer function. The fabricated antenna length is 30 mm as small and its measured gain is -15 dBd. The antenna receiving power is verified by measurement very comparable with the receiving power of a commercial terrestrial DMB monopole antenna of length 190 mm.

Active GNSS Antenna Implemented with Two-Stage LNA on High Permittivity Substrate

  • Go, Jong-Gyu;Chung, Jae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2004-2010
    • /
    • 2018
  • We propose a small active antenna to receive Global Navigation Satellite System (GNSS) signals, i.e., Global Positioning System (GPS) L1 (1,575MHz) and Russian Global Navigation Satellite System (GLONASS) L1 (1,600 MHz) signals. A two-stage low-noise amplifier (LNA) with more than 27 dB gain is implemented in the bottom layer of a three-layer antenna package. In addition, a hybrid coupler is used to combine signals from pair of proximately coupled orthogonal feeds with $90^{\circ}$ phase difference to achieve the circular polarization (CP) characteristic. Three layers of high permittivity (${\varepsilon}_r=10$) substrates are stacked and effectively integrated to have a small dimension of $64mm{\times}64mm{\times}7.42mm$ (including both circuit and antenna). The reflection coefficient of the fabricated antenna at the target frequency is below -10 dB, the measured antenna gain is above 26 dBic and the measured noise figure is less than 1.4 dB.

A Low Profile Dual-Microstripline-Fed 4-Arrayed Meander Monopole Antenna (소형 2중-급전 4-배열 미앤더 모노폴 안테나)

  • Jang, Yong-Woong;Lee, Sang-Woo
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.925-930
    • /
    • 2018
  • In this paper, we present a low profile dual-microstripline-fed double 4-arrayed meander monopole antenna with a cross-type element back by separated four-segments mesh-type reflector. The cross-type element and separated four-segments mesh-type reflector leads to enhance radiation patterns and antenna gain characteristics. The measurement value of the proposed antenna show that it has dipole-like radiation pattern characteristics. The experimental peak gain of fabricated antenna is about 2.89 dBi, which presents relatively high gain characteristics for a low profile(small-size) one. This antenna can be applied mobile RFID(radio frequency identification) readers, small medical instruments, broadcasting and home-networking operations, and other low profile high-gain systems.

Design of a Compact Antenna Array for Satellite Navigation System Using Hybrid Matching Network

  • Lee, Juneseok;Cho, Jeahoon;Ha, Sang-Gyu;Choo, Hosung;Jung, Kyung-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2045-2049
    • /
    • 2018
  • An antenna arrays for a satellite navigation systems require more antenna elements to mitigate multiple jamming signals. In order to maintain the small array size while increasing the number of antenna elements, miniaturization technique is essential for antenna design. In this work, an electrically small circular microstrip patch antenna with a 3 dB hybrid coupler is designed as an element antenna, where the 3 dB hybrid coupler can yield the circularly polarized radiation characteristic. The miniaturized element antenna typically has too large capacitance in GPS L1 and GLONASS G1 bands, making it difficult to match with a single stand-alone non-Foster matching circuit (NFMC) in a stable state. Therefore, we propose a new matching technique, referred to as the hybrid matching method, which consists of a NFMC and a passive circuit. This passive tuning circuit manages reactance of antenna elements at an appropriate capacitance without a pole in the operating frequency range. The antenna array is fabricated, and the measured results show a reflection coefficient of less than -10 dB and an isolation of greater than 50 dB. In addition, peak gain of the proposed antenna is increased by 22.3 dB compared to the antenna without the hybrid matching network.

Inter-cell Interference Coordination Method Based on Active Antenna System in Heterogeneous Networks (이종망 환경에서 능동 안테나 시스템 기반의 셀간 간섭 제어 방법)

  • Kim, Byoung-June;Park, Haesung;Kim, Duk Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.548-556
    • /
    • 2014
  • To cope with recently increasing demand for data traffics, heterogeneous networks have been actively studied, where small cells are deployed within a macro cell coverage with the same frequency band. To mitigate the interference from the macro cell to small cells, an enhanced Inter-cell Interference Coordination (eICIC) technique has been proposed, where ABS (Almost Blank Subframe) is used in time domain. However, there is a waste of resource since no data is transmitted in a macro-cell in ABS. In this paper, we propose a new interference management method by using a 3D sector beam based on Active Antenna System (AAS), where Genetic Algorithm (GA) is applied to reduce the antenna gain toward a small-cell. With the proposed scheme, the macro-cell and small cells can transmit data at the same time with the AAS antenna pattern generating reduced interference to small cells. The performance of the proposed scheme is evaluated by using an LTE-Advanced system level simulator.

Electrically Small Antenna with Bandwidth over 2/Q Limit (2/Q 대역폭 한계치를 넘는 소형 안테나 설계)

  • Lee, Chul-Hee;Choo, Ho-Sung;Park, Ik-Mo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.255-258
    • /
    • 2005
  • In this paper, we verify that the bandwidth of the optimized disk-loaded monopole antenna with electromagnetically coupled feed obtained using a genetic algorithm is broader than the theoretical bandwidth limit of 2/Q by simulation as well as by measurement. The measured bandwidth of the optimized antenna (kr : 0.599) is about 42% from 380 MHz to 580 MHz (VSWR<5.8). The efficiency measurement of the antenna is over 90% for the frequency band of operation.

  • PDF

The Design of Small size and High Chip Type Ceramic Dielectric Antenna for Bluetooth Application (소형 고이득 Bluetooth용 칩형 유전체 안테나 설계)

  • 문정익;박성욱;이덕재;왕영성;이충국
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.77-81
    • /
    • 2001
  • This paper proposed a novel chip type ceramic dielectric antenna by using the advanced meander line technique that the radiational metals are formed on the face of ceramic dielectric(8 ${\times}$ 4 ${\times}$ 1.5 mm, alumina) and both facses of substrate(1.0 mm thickness, FR-4). The performance of the antenna model has a good agreements between measurements and computed results. Resultly, it has a 10 dB return-loss bandwidth(2.4~2.4835 GHz) and 1.7 dBi measured radiation gain for Bluetooth application. The proposed antenna model can overcome the problems of the radiation gain from the small antenna's size.

  • PDF

A study of small antennas for MIMO applications (다중 입.출력(MIMO) 시스템용 소형 안테나 특성분석)

  • Chae, Gyoo-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1194-1199
    • /
    • 2006
  • In this paper, small printed antennas for MIMO applications are presented. The proposed antennas are based on PIFA structure which is a popular approach for miniaturization. The obtained antenna operates in IEEE802.11a band (5.15-5.35GHz) and has a planar structure which can be adopted for various potable applications. According to our simulation results, prototype antennas are manufactured and the isolation among the antenna elements are measured for MIMO applications. And we suggest a technique to improve isolation by adding a $\lambda$/4 slit between two antennas and investigate the results.

  • PDF

A Small Monopole Antenna with Novel Impedance Matching Structure (새로운 임피던스 매칭 구조를 가지는 소형 모노폴 안테나)

  • Kim, Dong-Jin;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.828-833
    • /
    • 2007
  • A small monopole antenna with a novel impedance matching structure is proposed in this paper. The proposed antenna is designed for W-LAN(IEEE 802.11b). The antenna design concept is based on a ${\lambda}/8$ folded monopole antenna with a self-impedance matching structure. The size of the proposed antenna is smaller than the resonant length, thus the impedance at the terminal of the antenna becomes very capacitive. To compensate fur this impedance mismatching, the proposed antenna employs a novel self-impedance matching structure. The self-impedance matching structure is located on the top of the antenna; it improves the impedance matching and ultimately the efficiency of the antenna. The measured results of the proposed antenna show reasonable agreement with prediction.

Characteristics of Electromagnetically Coupled Small Broadband Monopole Antenna with Multiple Shorting Pins (다중의 단락핀을 가지는 전자기적 결합 급전 소형 광대역 모노폴 안테나의 특성 연구)

  • Jung Jong-Ho;Moon Youngmin;Choo Hosung;Park Ikmo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.12 s.91
    • /
    • pp.1168-1177
    • /
    • 2004
  • This paper presents the characteristics of the electromagnetically coupled small broadband disk-loaded monopole antenna with multiple shorting pins. The electromagnetically coupled monopole antenna can achieve broad bandwidth by controlling resonant frequency of the rectangular disk-loaded monopole and a probe with the spiral strip line monopole. The number and arrangement of the shorting pin affect the capacitance of the disk. The variation of the capacitance changes resonant frequency of the antenna, and therefore, its electrical sizes and frequency bandwidth are also affected. The antenna with three shorting pins has a volume of $0.094\lambda_0{\times}0.094\lambda_0{\times}0.094\lambda_0$ in electrical length and the frequency bandwidth of $26.8\%\;for\;VSWR\leq2$ with the center frequency at 2.556 GHz.