• 제목/요약/키워드: small RNA

검색결과 874건 처리시간 0.027초

PD-L1 Targeted Immunoliposomes with PD-L1 siRNA and HDAC Inhibitor for Anti-Lung Cancer Immunotherapy

  • Se-Yun Hong;Seong-Min Lee;Pyung-Hwan Kim;Keun-Sik Kim
    • 대한의생명과학회지
    • /
    • 제28권4호
    • /
    • pp.247-259
    • /
    • 2022
  • Immunotherapy, which uses an immune mechanism in the body, has received considerable attention for cancer treatment. Suberoylanilide hydroxamic acid (SAHA), also known as a histone deacetylase inhibitor (HDACi), is used as a cancer treatment to induce active immunity by increasing the expression of T cell-induced chemokines. However, this SAHA treatment has the disadvantage of causing PD-L1 overexpression in tumor cells. In this study, we prevented PD-L1 overexpression by blocking the PD-1/PD-L1 pathway using PD-L1 siRNA. We designed two types of liposomes, the neutral lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholin (POPC) for SAHA, and 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) for siRNA. To effectively target PD-L1 in cancer cells, we conjugated PD-L1 antibody with liposomes containing SAHA or PD-L1 siRNA. These immunoliposomes were also evaluated for cytotoxicity, gene silencing, and T-cell-induced chemokine expression in human non-small cell lung cancer A549 cells. It was confirmed that the combination of the two immunoliposomes increased the cancer cell suppression efficacy through Jurkat T cell induction more than twice compared to SAHA alone treatment. In conclusion, this combination of immunoliposomes containing a drug and nucleic acid has promising therapeutic potential for non-small-cell lung carcinoma (NSCLC).

VEGF siRNA Delivery by a Cancer-Specific Cell-Penetrating Peptide

  • Lee, Young Woong;Hwang, Young Eun;Lee, Ju Young;Sohn, Jung-Hoon;Sung, Bong Hyun;Kim, Sun Chang
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권3호
    • /
    • pp.367-374
    • /
    • 2018
  • RNA interference provides an effective tool for developing antitumor therapies. Cell-penetrating peptides (CPPs) are delivery vectors widely used to efficiently transport small-interfering RNA (siRNA) to intracellular targets. In this study, we investigated the efficacy of the cancer-specific CPP carrier BR2 to specifically transport siRNA to cancer-target cells. Our results showed that BR2 formed a complex with anti-vascular endothelial growth factor siRNA (siVEGF) that exhibited the appropriate size and surface charge for in vivo treatment. Additionally, the BR2-VEGF siRNA complex exhibited significant serum stability and high levels of gene-silencing effects in vitro. Moreover, the transfection efficiency of the complex into a cancer cell line was higher than that observed in non-cancer cell lines, resulting in downregulated intracellular VEGF levels in HeLa cells and comprehensively improved antitumor efficacy in the absence of significant toxicity. These results indicated that BR2 has significant potential for the safe, efficient, and specific delivery of siRNA for diverse applications.

Cytokine mRNA Expression in the Small Intestine of Weanling Pigs Fed Diets Supplemented with Specialized Protein or Peptide Sources

  • Zhao, J.;Harper, A.F.;Webb, K.E. Jr.;Kuehn, L.A.;Gilbert, E.;Xiao, X.;Wong, E.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권12호
    • /
    • pp.1800-1806
    • /
    • 2008
  • Cytokines play a central role in the mucosal immune response and are involved in regulation of nutrient absorption, metabolism and animal growth. This study investigated the effect of diet manipulation with specialized protein or peptide sources on expression of cytokine (IL-1, IL-6, IL-10, and TNF-${\alpha}$) mRNA abundance in different intestinal regions and at different ages post-weaning in piglets. A total of 48 (17 days of age, $6.16{\pm}0.34kg\;BW$) weanling pigs were fed either a corn-soy/whey protein basal diet, the basal diet supplemented with spray-dried plasma protein (SDPP), or the basal diet supplemented with $Peptiva^{(R)}$, a hydrolyzed marine plant protein. A fourth treatment group was fed the SDPP diet, but the feed intake level was limited (SDPP-LF). Pigs were killed at 3 and 10 d, and intestinal cytokine mRNA was measured by real-time PCR using the relative quantification method. The SDPP-LF group exhibited an increased TNF-${\alpha}$ mRNA abundance compared with the ad libitum SDPP group (p<0.05). The TNF-${\alpha}$ and IL-10 mRNA abundance increased from the proximal to distal part of the intestine, and the mRNA abundance was greater (p<0.01) in the distal intestine as compared with the proximal and middle intestine. The cytokines IL-1-${\beta}$, IL-10 and TNF-${\alpha}$ mRNA abundance also increased from d3 to d10 postweaning (p<0.01). In summary, restricted feeding increased the TNF-${\alpha}$ mRNA abundance in the small intestine, however neither SDPP nor peptide supplementation affected cytokine mRNA expression. Abundance of mRNA for most cytokines examined in this study increased with age post-weaning, suggesting that during 10 d after weaning the mucosal immune system is still under development.

NMR methods for structural analysis of RNA: a Review

  • Kim, Nak-Kyoon;Nam, Yun-Sik;Lee, Kang-Bong
    • 한국자기공명학회논문지
    • /
    • 제18권1호
    • /
    • pp.5-9
    • /
    • 2014
  • In last three decades, RNA molecules have been revealed to play the central roles in many cellular processes. Structural understanding of RNA molecules is essential to interpret their functions, and many biophysical techniques have been adopted for this purpose. NMR spectroscopy is a powerful tool to study structures and dynamics of RNA molecules, and it has been further applied to study tertiary interactions between RNA molecules, RNA-protein, and RNA-small molecules. This short article accounts for the general methods for NMR sample preparations, and also partially covers the resonance assignments of structured RNA molecules.

Effects of different target sites on antisense RNA-mediated regulation of gene expression

  • Park, Hongmarn;Yoon, Yeongseong;Suk, Shinae;Lee, Ji Young;Lee, Younghoon
    • BMB Reports
    • /
    • 제47권11호
    • /
    • pp.619-624
    • /
    • 2014
  • Antisense RNA is a type of noncoding RNA (ncRNA) that binds to complementary mRNA sequences and induces gene repression by inhibiting translation or degrading mRNA. Recently, several small ncRNAs (sRNAs) have been identified in Escherichia coli that act as antisense RNA mainly via base pairing with mRNA. The base pairing predominantly leads to gene repression, and in some cases, gene activation. In the current study, we examined how the location of target sites affects sRNA-mediated gene regulation. An efficient antisense RNA expression system was developed, and the effects of antisense RNAs on various target sites in a model mRNA were examined. The target sites of antisense RNAs suppressing gene expression were identified, not only in the translation initiation region (TIR) of mRNA, but also at the junction between the coding region and 3' untranslated region. Surprisingly, an antisense RNA recognizing the upstream region of TIR enhanced gene expression through increasing mRNA stability.

Effect of Chitosan on Nitric Oxide Content and Inducible Nitric Oxide Synthase Activity in Serum and Expression of Inducible Nitric Oxide Synthase mRNA in Small Intestine of Broiler Chickens

  • Li, H.Y.;Yan, S.M.;Shi, B.L.;Guo, X.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권7호
    • /
    • pp.1048-1053
    • /
    • 2009
  • The present study was conducted to determine the effects of chitosan on nitric oxide (NO) content and inducible nitric oxide synthase (iNOS) activity in serum, and relative expression of iNOS mRNA in the duodenum, jejunum, and ileum of broiler chickens. A total of 240 one-day-old Arbor Acre mixed-sex broiler chickens were randomly allotted to six dietary treatments with five replicates in each treatment and eight chickens in each replicate. The broiler chickens in the six treatments were fed the basal diet supplemented with 0 (control), 0.05, 0.2, 0.5, 1.0 or 2.0 g/kg chitosan. The trial lasted for 42 days. The results showed that dietary chitosan enhanced NO content and iNOS activity in serum as well as iNOS mRNA expression in the duodenum and ileum of broiler chickens in a quadratic dose-dependent manner (p<0.05), and improved jejunum iNOS mRNA expression in a quadratic dose-dependent manner (p<0.10) with increasing addition of chitosan. Chicks fed a diet containing 0.5-1.0 g/kg chitosan had higher NO content and iNOS activity in serum as well as small-intestinal iNOS mRNA expression compared with birds given the control diet, but positive effects of chitosan tended to be suppressed when addition of chitosan in the diet was increased to 2.0 g/kg. These results implied that there was a threshold level of chitosan inclusion beyond which progressive reductions in serum NO content and small intestinal iNOS expression occured, and the regulation of chitosan on immune functions in chickens is probably associated with activated expression of iNOS and NO secretion.

siRNAs Derived from Cymbidium Mosaic Virus and Odontoglossum Ringspot Virus Down-modulated the Expression Levels of Endogenous Genes in Phalaenopsis equestris

  • Lan, Han-hong;Wang, Cui-mei;Chen, Shuang-shuang;Zheng, Jian-ying
    • The Plant Pathology Journal
    • /
    • 제35권5호
    • /
    • pp.508-520
    • /
    • 2019
  • Interplay between Cymbidium mosaic virus (CymMV)/Odontoglossum ringspot virus (ORSV) and its host plant Phalaenopsis equestris remain largely unknown, which led to deficiency of effective measures to control disease of P. equestris caused by infecting viruses. In this study, for the first time, we characterized viral small interfering RNAs (vsiRNAs) profiles in P. equestris co-infected with CymMV and ORSV through small RNA sequencing technology. CymMV and ORSV small interfering RNAs (siRNAs) demonstrated several general and specific/new characteristics. vsiRNAs, with A/U bias at the first nucleotide, were predominantly 21-nt long and they were derived predominantly (90%) from viral positive-strand RNA. 21-nt siRNA duplexes with 0-nt overhangs were the most abundant 21-nt duplexes, followed by 2-nt overhangs and then 1-nt overhangs 21-nt duplexes in infected P. equestris. Continuous but heterogeneous distribution and secondary structures prediction implied that vsiRNAs originate predominantly by direct Dicer-like enzymes cleavage of imperfect duplexes in the most folded regions of the positive strand of both viruses RNA molecular. Furthermore, we totally predicted 54 target genes by vsiRNAs with psRNATarget server, including disease/stress response-related genes, RNA interference core components, cytoskeleton-related genes, photosynthesis or energy supply related genes. Gene Ontology classification showed that a majority of the predicted targets were related to cellular components and cellular processes and performed a certain function. All target genes were down-regulated with different degree by vsiRNAs as shown by real-time reverse transcription polymerase chain reaction. Taken together, CymMV and ORSV siRNAs played important roles in interplay with P. equestris by down modulating the expression levels of endogenous genes in host plant.

Mechanisms for Hfq-Independent Activation of rpoS by DsrA, a Small RNA, in Escherichia coli

  • Kim, Wonkyong;Choi, Jee Soo;Kim, Daun;Shin, Doohang;Suk, Shinae;Lee, Younghoon
    • Molecules and Cells
    • /
    • 제42권5호
    • /
    • pp.426-439
    • /
    • 2019
  • Many small RNAs (sRNAs) regulate gene expression by base pairing to their target messenger RNAs (mRNAs) with the help of Hfq in Escherichia coli. The sRNA DsrA activates translation of the rpoS mRNA in an Hfq-dependent manner, but this activation ability was found to partially bypass Hfq when DsrA is overproduced. The precise mechanism by which DsrA bypasses Hfq is unknown. In this study, we constructed strains lacking all three rpoS-activating sRNAs (i.e., ArcZ, DsrA, and RprA) in $hfq^+$ and $Hfq^-$ backgrounds, and then artificially regulated the cellular DsrA concentration in these strains by controlling its ectopic expression. We then examined how the expression level of rpoS was altered by a change in the concentration of DsrA. We found that the translation and stability of the rpoS mRNA are both enhanced by physiological concentrations of DsrA regardless of Hfq, but that depletion of Hfq causes a rapid degradation of DsrA and thereby decreases rpoS mRNA stability. These results suggest that the observed Hfq dependency of DsrA-mediated rpoS activation mainly results from the destabilization of DsrA in the absence of Hfq, and that DsrA itself contributes to the translational activation and stability of the rpoS mRNA in an Hfq-independent manner.

Identification of piRNAs in Hela cells by massive parallel sequencing

  • Lu, Yilu;Li, Chao;Zhang, Kun;Sun, Huaqin;Tao, Dachang;Liu, Yunqiang;Zhang, Sizong;Ma, Yongxin
    • BMB Reports
    • /
    • 제43권9호
    • /
    • pp.635-641
    • /
    • 2010
  • Piwi proteins and Piwi-interacting RNAs (piRNAs) have been implicated in transposon control in germline from Drosophila to mammals. To examine the profile of small RNA expression in human cancer cells and explore difference in small RNA transcriptome, small RNA libraries prepared from wildtype, HILI overexpressed and HILI knockdowned Hela cells were sequenced using Solexa technology. piRNAs and other repeat-associated small RNAs were observed in Hela cells. By using in situ hybridization, piR-49322 was localized in the nucleolus and around the periphery of nuclear membrane in Hela cells. Following the overexpression of HILI, the retrotransposon elements LINE1 was significantly repressed, while LINE1-associated small RNAs decreased in abundance. The present study demonstrated that HILI along with piRNAs plays a role in LINE1 suppression in Hela cancer cell line.

Identification of new ligands for RNA pseudoknot by structure-based screening of chemical database

  • Park, So-Jung;Jeong, Seung-Hyun;Kim, Yang-Gyun;Park, Hyun-Ju
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.254.2-254.2
    • /
    • 2003
  • For many viruses, -1 ribosomal frameshifting regulate protein synthesis using an RNA pseudoknot. The integrity of pseudoknot stability and structure is the important feature for efficient frameshifting. Thus, small molecules interacting with viral RNA pseudoknots would be potential antiviral agents targeting\ulcorner frameshifting system in viruses. X-ray structure of RNA pseudoknot complexed with biotin has been reported, in which biotin is bound at the interface between the pseudoknot's stacked helices. (omitted)

  • PDF