Browse > Article
http://dx.doi.org/10.4014/jmb.1711.11025

VEGF siRNA Delivery by a Cancer-Specific Cell-Penetrating Peptide  

Lee, Young Woong (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Hwang, Young Eun (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Lee, Ju Young (Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT))
Sohn, Jung-Hoon (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Sung, Bong Hyun (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Sun Chang (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.3, 2018 , pp. 367-374 More about this Journal
Abstract
RNA interference provides an effective tool for developing antitumor therapies. Cell-penetrating peptides (CPPs) are delivery vectors widely used to efficiently transport small-interfering RNA (siRNA) to intracellular targets. In this study, we investigated the efficacy of the cancer-specific CPP carrier BR2 to specifically transport siRNA to cancer-target cells. Our results showed that BR2 formed a complex with anti-vascular endothelial growth factor siRNA (siVEGF) that exhibited the appropriate size and surface charge for in vivo treatment. Additionally, the BR2-VEGF siRNA complex exhibited significant serum stability and high levels of gene-silencing effects in vitro. Moreover, the transfection efficiency of the complex into a cancer cell line was higher than that observed in non-cancer cell lines, resulting in downregulated intracellular VEGF levels in HeLa cells and comprehensively improved antitumor efficacy in the absence of significant toxicity. These results indicated that BR2 has significant potential for the safe, efficient, and specific delivery of siRNA for diverse applications.
Keywords
RNA interference; small-interfering RNA; cell-penetrating peptide; cancer-specific peptide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J. 2010. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62: 144-149.   DOI
2 Crombez L, Aldrian-Herrada G, Konate K, Nguyen QN, McMaster GK, Brasseur R, et al. 2009. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol. Ther. 17: 95-103.   DOI
3 Garzon R, Marcucci G, Croce CM. 2010. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat. Rev. Drug Discov. 9: 775-789.   DOI
4 Rejman J, Oberle V, Zuhorn IS, Hoekstra D. 2004. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377: 159-169.   DOI
5 Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. 2009. Size-dependent endocytosis of nanoparticles. Adv. Mater. 21: 419-424.   DOI
6 Maeda H. 2010. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug. Chem. 21: 797-802.   DOI
7 Lee M, Rentz J, Han SO, Bull DA, Kim SW. 2003. Water-soluble lipopolymer as an efficient carrier for gene delivery to myocardium. Gene Ther. 10: 585-593.   DOI
8 Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. 2005. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol. Ther. 11: 990-995.   DOI
9 Svensen N, Walton JG, Bradley M. 2012. Peptides for cell-selective drug delivery. Trends Pharmacol. Sci. 33: 186-192.
10 Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811.   DOI
11 Stevenson M, Ramos-Perez V, Singh S, Soliman M, Preece JA, Briggs SS, et al. 2008. Delivery of siRNA mediated by histidine-containing reducible polycations. J. Control. Release 130: 46-56.   DOI
12 Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494-498.   DOI
13 Morris KV, Chan SW, Jacobsen SE, Looney DJ. 2004. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305: 1289-1292.   DOI
14 Aagaard L, Rossi JJ. 2007. RNAi therapeutics: principles, prospects and challenges. Adv. Drug Deliv. Rev. 59: 75-86.   DOI
15 Castanotto D, Rossi JJ. 2009. The promises and pitfalls of RNA-interference-based therapeutics. Nature 457: 426-433.   DOI
16 de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. 2007. Interfering with disease: a progress report on siRNA-based therapeutics. Nat. Rev. Drug Discov. 6: 443-453.   DOI
17 Meade BR, Dowdy SF. 2007. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv. Drug Deliv. Rev. 59: 134-140.   DOI
18 Tomar RS, Matta H, Chaudhary PM. 2003. Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 22: 5712-5715.   DOI
19 Barquinero J, Eixarch H, Perez-Melgosa M. 2004. Retroviral vectors: new applications for an old tool. Gene Ther. 11 Suppl 1: S3-S9.   DOI
20 Devroe E, Silver PA. 2002. Retrovirus-delivered siRNA. BMC Biotechnol. 2: 15.   DOI
21 Golzio M, Mazzolini L, Ledoux A, Paganin A, Izard M, Hellaudais L, et al. 2007. In vivo gene silencing in solid tumors by targeted electrically mediated siRNA delivery. Gene Ther. 14: 752-759.   DOI
22 Choi YS, Lee JY, Suh JS, Kwon YM, Lee SJ, Chung JK, et al. 2010. The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Biomaterials 31: 1429-1443.   DOI
23 Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, et al. 2006. RNAi-mediated gene silencing in non-human primates. Nature 441: 111-114.   DOI
24 de Martimprey H, Bertrand JR, Fusco A, Santoro M, Couvreur P, Vauthier C, et al. 2008. siRNA nanoformulation against the Ret/PTC1 junction oncogene is efficient in an in vivo model of papillary thyroid carcinoma. Nucleic Acids Res. 36: e2.
25 Hannon GJ. 2002. RNA interference. Nature 418: 244-251.   DOI
26 Pan R, Xu W, Ding Y, Lu S, Chen P. 2016. Uptake mechanism and direct translocation of a new CPP for siRNA delivery. Mol. Pharm. 13: 1366-1374.   DOI
27 Wang F, Wang Y, Zhang X, Zhang W, Guo S, Jin F. 2014. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J. Control. Release 174: 126-136.   DOI
28 Cleal K, He L, Watson PD, Jones AT. 2013. Endocytosis, intracellular traffic and fate of cell penetrating peptide based conjugates and nanoparticles. Curr. Pharm. Des. 19: 2878-2894.   DOI
29 Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y, et al. 2004. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol. Ther. 10: 1011-1022.   DOI
30 Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, et al. 2003. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278: 585-590.   DOI
31 Milletti F. 2012. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov. Today 17: 850-860.   DOI
32 Egorova A, Shubina A, Sokolov D, Selkov S, Baranov V, Kiselev A. 2016. CXCR4-targeted modular peptide carriers for efficient anti-VEGF siRNA delivery. Int. J. Pharm. 515: 431-440.
33 Vives E, Schmidt J, Pelegrin A. 2008. Cell-penetrating and cell-targeting peptides in drug delivery. Biochim. Biophys. Acta 1786: 126-138.
34 Chung JY, Ul Ain Q, Lee HL, Kim SM, Kim YH. 2017. Enhanced systemic anti-angiogenic siVEGF delivery using PEGylated oligo-D-arginine. Mol. Pharm. 14: 3059-3068.   DOI
35 Kanazawa T, Sugawara K, Tanaka K, Horiuchi S, Takashima Y, Okada H. 2012. Suppression of tumor growth by systemic delivery of anti-VEGF siRNA with cell-penetrating peptidemodified MPEG-PCL nanomicelles. Eur. J. Pharm. Biopharm. 81: 470-477.   DOI
36 Raucher D, Ryu JS. 2015. Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol. Med. 21: 560-570.
37 Lim KJ, Sung BH, Shin JR, Lee YW, Kim DJ, Yang KS, et al. 2013. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells. PLoS One 8: e66084.   DOI
38 Wallbrecher R, Ackels T, Olea RA, Klein MJ, Caillon L, Schiller J, et al. 2017. Membrane permeation of arginine-rich cell-penetrating peptides independent of transmembrane potential as a function of lipid composition and membrane fluidity. J. Control. Release 256: 68-78.
39 Nakase I, Tanaka G, Futaki S. 2013. Cell-penetrating peptides (CPPs) as a vector for the delivery of siRNAs into cells. Mol. Biosyst. 9: 855-861.   DOI
40 Yoo J, Lee D, Gujrati V, Rejinold NS, Lekshmi KM, Uthaman S, et al. 2017. Bioreducible branched poly(modified nona-arginine) cell-penetrating peptide as a novel gene delivery platform. J. Control. Release 246: 142-154.   DOI