• Title/Summary/Keyword: smad3

Search Result 126, Processing Time 0.028 seconds

Association between SMAD2 Gene and Serum Liver Enzyme Levels in the Korean Population

  • Ahn, Hyo-Jun;Sull, Jae Woong;Eom, Yong-Bin
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.124-131
    • /
    • 2013
  • Genome-wide association studies (GWAS) have identified a number of common variants associated with serum liver enzyme homeostasis in population. In the previous study, single nucleotide polymorphisms (SNPs) in several genes have been reported to be associated with serum liver enzyme levels in European population. We aimed to confirm whether the genetic variation of SMAD2 (SMAD family member 2) gene influence the serum liver enzyme levels in Korean population. We genotyped variants in or near SMAD2 in a population-based sample including 994 unrelated Korean adult. Here, we performed association analysis to elucidate the possible relations of genetic polymorphisms in SMAD2 gene with serum liver enzyme levels. By examining genotype data of a total of 944 subjects in 5 hospital health promotion center, we discovered the SMAD2 gene polymorphisms are associated with serum liver enzyme levels. The common and highest significant polymorphism was rs17736760 (${\beta}$=3.51, P=5.31E-07) with glutamic oxaloacetic transferase (GOT), rs17736760 (${\beta}$=5.99, P=1.25E-05) with glutamic pyruvate transaminase (GPT), and rs17736760 (${\beta}$=15.68, P=9.93E-07) with gamma glutamyl transferase (GGT) in all group. Furthermore, the SNP rs17736760 was consistently associated with GOT (${\beta}$=5.25, P=1.72E-06), GPT (${\beta}$=9.97, P=1.16E-05), GGT (${\beta}$=26.13, P=3.43E-06) in men group. Consequently, we found statistically significant SNP in SMAD2 gene that are associated with serum levels of GOT, GPT, and GGT. In addition, these results suggest that the individuals with the minor alleles of the SNP in the SMAD2 gene may be more elevated serum liver enzyme levels in the Korean population.

The Effects of Retinoic Acid and MAPK Inhibitors on Phosphorylation of Smad2/3 Induced by Transforming Growth Factor β1

  • Lee, Sang Hoon;Shin, Ju Hye;Shin, Mi Hwa;Kim, Young Sam;Chung, Kyung Soo;Song, Joo Han;Kim, Song Yee;Kim, Eun Young;Jung, Ji Ye;Kang, Young Ae;Chang, Joon;Park, Moo Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.1
    • /
    • pp.42-52
    • /
    • 2019
  • Background: Transforming growth factor ${\beta}$ (TGF-${\beta}$), retinoic acid (RA), p38 mitogen-activated protein kinase (MAPK), and MEK signaling play critical roles in cell differentiation, proliferation, and apoptosis. We investigated the effect of RA and the role of these signaling molecules on the phosphorylation of Smad2/3 (p-Smad2/3) induced by TGF-${\beta}1$. Methods: A549 epithelial cells and CCD-11Lu fibroblasts were incubated and stimulated with or without all-trans RA (ATRA) and TGF-${\beta}1$ and with MAPK or MEK inhibitors. The levels of p-Smad2/3 were analyzed by western blotting. For animal models, we studied three experimental mouse groups: control, bleomycin, and bleomycin+ATRA group. Changes in histopathology, lung injury score, and levels of TGF-${\beta}1$ and Smad3 were evaluated at 1 and 3 weeks. Results: When A549 cells were pre-stimulated with TGF-${\beta}1$ prior to RA treatment, RA completely inhibited the p-Smad2/3. However, when A549 cells were pre-treated with RA prior to TGF-${\beta}1$ stimulation, RA did not completely suppress the p-Smad2/3. When A549 cells were pre-treated with MAPK inhibitor, TGF-${\beta}1$ failed to phosphorylate Smad2/3. In fibroblasts, p38 MAPK inhibitor suppressed TGF-${\beta}1$-induced p-Smad2. In a bleomycin-induced lung injury mouse model, RA decreased the expression of TGF-${\beta}1$ and Smad3 at 1 and 3 weeks. Conclusion: RA had inhibitory effects on the phosphorylation of Smad induced by TGF-${\beta}1$ in vitro, and RA also decreased the expression of TGF-${\beta}1$ at 1 and 3 weeks in vivo. Furthermore, pre-treatment with a MAPK inhibitor showed a preventative effect on TGF-${\beta}1$/Smad phosphorylation in epithelial cells. As a result, a combination of RA and MAPK inhibitors may suppress the TGF-${\beta}1$-induced lung injury and fibrosis.

Activin A Stimulates Mouse APCs to Express BAFF via ALK4-Smad3 Pathway

  • Kim, Jae-Hee;Seo, Goo-Young;Kim, Pyeung-Hyeun
    • IMMUNE NETWORK
    • /
    • v.11 no.4
    • /
    • pp.196-202
    • /
    • 2011
  • Background: B cell-activating factor belonging to the TNF family (BAFF) is primarily expressed by macrophages and dendritic cells, and stimulates B cell proliferation, differentiation, survival, and Ig production. In the present study, we explored the effect of activin A on BAFF expression by APCs. Methods: To investigate the effect of activin A on BAFF expression by mouse APCs, we measured the level of BAFF expression at the transcriptional and protein levels using RT-PCR and ELISA. Results: Activin A markedly enhanced BAFF expression in mouse macrophages and dendritic cells at both the transcriptional and protein levels. SB431542, an activin receptor-like kinase 4 (ALK4) inhibitor, completely abrogated activin A-induced BAFF transcription. Furthermore, overexpression of DN-Smad3 abolished activin-induced BAFF expression at the transcriptional and protein levels. Conclusion: These results demonstrate that activin A can enhance BAFF expression through ALK4-Smad3 pathway.

MicroRNA-152-5p inhibits proliferation and migration and promotes apoptosis by regulating expression of Smad3 in human keloid fibroblasts

  • Pang, Qianqian;Wang, Yuming;Xu, Mingyuan;Xu, Jiachao;Xu, Shengquan;Shen, Yichen;Xu, Jinghong;Lei, Rui
    • BMB Reports
    • /
    • v.52 no.3
    • /
    • pp.202-207
    • /
    • 2019
  • Keloids are the most common pathological form of trauma healing, with features that seriously affect appearance and body function, are difficult to treat and have a high recurrence rate. Emerging evidence suggests that miRNAs are involved in a variety of pathological processes and play an important role in the process of fibrosis. In this study, we investigated the function and regulatory network of miR-152-5p in keloids. The miRNA miR-152-5p is frequently downregulated in keloid tissue and primary cells compared to normal skin tissue and fibroblasts. In addition, the downregulation of miR-152-5p is significantly associated with the proliferation, migration and apoptosis of keloid cells. Overexpression of miR-152-5p significantly inhibits the progression of fibrosis in keloids. Smad3 is a direct target of miR-152-5p, and knockdown of Smad3 also inhibits fibrosis progression, consistent with the overexpression of miR-152-5p. The interaction between miR-152-5p and Smad3 occurs through the Erk1/2 and Akt pathways and regulates collagen3 production. In summary, our study demonstrates that miR-152-5p/Smad3 regulatory pathways involved in fibrotic progression may be a potential therapeutic target of keloids.

Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression

  • Zhao, Hongying;Zhang, Jun;Shao, Haiyu;Liu, Jianwen;Jin, Mengran;Chen, Jinping;Huang, Yazeng
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.211-221
    • /
    • 2017
  • Transforming growth factor ${\beta}1$ $(TGF{\beta}1)/Smad4$ signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through $TGF{\beta}1/Smad4$ signaling. Here, we present that $TGF{\beta}1$ elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by $TGF{\beta}1$. The results of luciferase reporter experiments and ChIP assays demonstrated that $TGF{\beta}1$ promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo, further verifying that miR-155 is a transcriptional target of the $TGF{\beta}1/Smad4$ pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the $TGF{\beta}1$-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that $TGF{\beta}1/Smad4$ signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise.

Anti-fibrotic Effect of Mori Folium Extract in Hepatic Stellate Cells (간성상세포에서 상엽(桑葉) 추출물의 섬유화 억제 효과)

  • Byun, Sung Hui;Park, Sang Mi;Kim, Sang Chan;Cho, Il Je
    • The Korea Journal of Herbology
    • /
    • v.28 no.4
    • /
    • pp.49-55
    • /
    • 2013
  • Objectives : Mori Folium was popularly used as one of the traditional medicinal herbs. Although M. Folium has been cultivated for rearing silkworm historically, it's use has been expanded as natural therapeutic agent for the treatment of filariasis, diabetes and dropsy in East Asia. However, little has been known about the effect of M. Folium on liver fibrosis. Therefore, we would like to explore an anti-fibrogenic potential of M. Folium extract (MFE) using immortalized human hepatic stellate cell line, LX-2 cells. Methods : We examined the effects of MFE on the transforming growth factor ${\beta}1$ ($TGF{\beta}1$)-induced liver fibrosis in LX-2 cells. Cell viability, Smad binding element-driven luciferase activity, phosphorylations level of Smad 2/3, and expression level of $TGF{\beta}1$-dependent target genes were monitored in the MFE-treated LX-2 cells. Results : Up to 30 ${\mu}g/ml$ MFE treatment did not show any possible toxic effect in LX-2 cells. MFE inhibited $TGF{\beta}1$-inducible Smad binding element-driven luciferase activity and decreased the $TGF{\beta}1$-inducible phosphorylations of Smad 2 and Smad 3 in hepatic stellate cell in a dose dependent manner. Furthermore, increases of plasminogen activator inhibitor type 1, $TGF{\beta}1$ and matrix metalloproteinases 2 genes by $TGF{\beta}1$ were also attenuated by MFE treatment. Conclusions : These findings suggested that MFE would be used as a potential therapeutic agent for the treatment liver fibrosis, which might be mediated by the inhibition of $TGF{\beta}1$-inducible Smad 2/3 transactivation and target genes expression.

Transforming Growth Factor β Inhibits MUC5AC Expression by Smad3/HDAC2 Complex Formation and NF-κB Deacetylation at K310 in NCI-H292 Cells

  • Lee, Su Ui;Kim, Mun-Ock;Kang, Myung-Ji;Oh, Eun Sol;Ro, Hyunju;Lee, Ro Woon;Song, Yu Na;Jung, Sunin;Lee, Jae-Won;Lee, Soo Yun;Bae, Taeyeol;Hong, Sung-Tae;Kim, Tae-Don
    • Molecules and Cells
    • /
    • v.44 no.1
    • /
    • pp.38-49
    • /
    • 2021
  • Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of the gel-forming MUC5AC protein, are significant risk factors for patients with asthma and chronic obstructive pulmonary disease (COPD). The transforming growth factor β (TGFβ) signaling pathway negatively regulates MUC5AC expression; however, the underlying molecular mechanism is not fully understood. Here, we showed that TGFβ significantly reduces the expression of MUC5AC mRNA and its protein in NCI-H292 cells, a human mucoepidermoid carcinoma cell line. This reduced MUC5AC expression was restored by a TGFβ receptor inhibitor (SB431542), but not by the inhibition of NF-κB (BAY11-7082 or Triptolide) or PI3K (LY294002) activities. TGFβ-activated Smad3 dose-dependently bound to MUC5AC promoter. Notably, TGFβ-activated Smad3 recruited HDAC2 and facilitated nuclear translocation of HDAC2, thereby inducing the deacetylation of NF-κB at K310, which is essential for a reduction in NF-κB transcriptional activity. Both TGFβ-induced nuclear translocation of Smad3/HDAC2 and deacetylation of NF-κB at K310 were suppressed by a Smad3 inhibitor (SIS3). These results suggest that the TGFβ-activated Smad3/HDAC2 complex is an essential negative regulator for MUC5AC expression and an epigenetic regulator for NF-κB acetylation. Therefore, these results collectively suggest that modulation of the TGFβ1/Smad3/HDAC2/NF-κB pathway axis can be a promising way to improve lung function as a treatment strategy for asthma and COPD.

Down-Regulation of MicroRNA-210 Confers Sensitivity towards 1'S-1'-Acetoxychavicol Acetate (ACA) in Cervical Cancer Cells by Targeting SMAD4

  • Phuah, Neoh Hun;Azmi, Mohamad Nurul;Awang, Khalijah;Nagoor, Noor Hasima
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.291-298
    • /
    • 2017
  • MicroRNAs (miRNAs) are short non-coding RNAs that regulate genes posttranscriptionally. Past studies have reported that miR-210 is up-regulated in many cancers including cervical cancer, and plays a pleiotropic role in carcinogenesis. However, its role in regulating response towards anti-cancer agents has not been fully elucidated. We have previously reported that the natural compound 1'S-1'-acetoxychavicol acetate (ACA) is able to induce cytotoxicity in various cancer cells including cervical cancer cells. Hence, this study aims to investigate the mechanistic role of miR-210 in regulating response towards ACA in cervical cancer cells. In the present study, we found that ACA down-regulated miR-210 expression in cervical cancer cells, and suppression of miR-210 expression enhanced sensitivity towards ACA by inhibiting cell proliferation and promoting apoptosis. Western blot analysis showed increased expression of mothers against decapentaplegic homolog 4 (SMAD4), which was predicted as a target of miR-210 by target prediction programs, following treatment with ACA. Luciferase reporter assay confirmed that miR-210 binds to sequences in 3'UTR of SMAD4. Furthermore, decreased in SMAD4 protein expression was observed when miR-210 was overexpressed. Conversely, SMAD4 protein expression increased when miR-210 expression was suppressed. Lastly, we demonstrated that overexpression of SMAD4 augmented the anti-proliferative and apoptosis-inducing effects of ACA. Taken together, our results demonstrated that down-regulation of miR-210 conferred sensitivity towards ACA in cervical cancer cells by targeting SMAD4. These findings suggest that combination of miRNAs and natural compounds could provide new strategies in treating cervical cancer.

Effects of Injinchunggan-tang (Yinchenqinggan-tang) on $TGF-{\beta}1-Mediated$ Hepatic Fibrosis (인진청간탕이 $TGF-{\beta}1$ 매개성 간섬유화에 미치는 영향)

  • 심재옥;김영철;이장훈;우홍정
    • The Journal of Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.1-11
    • /
    • 2003
  • Objectives : The aim of this study was to characterize the effect of Injinchunggan-tang on $TGF-{\beta}1-induced$ hepatic fibrosis. Methods : mRNA and protein expression levels of $TGF-{\beta}1$ in Injinchunggan-tang-treated HepG2 cells were compared to untreated cells using quantitative RT-PCR and ELISA assay, respectively. mRNA expression levels of the TGF-1 pathway genes (TR-1, TR-II, Smad2, Smad3, Smad4, and PAI-1) and fibrosis-associated genes (CTGF, fibronectin, and collagen type 1) were evaluated by quantitative RT-PCR. The effect of Injinchunggan-tang on cell proliferation of T3891 human fibroblast was evaluated using [$^3H$]thymidine incorporation assay. Results : Expression of $TGF-{\beta}1$ mRNA and protein was inhibited by Injinchunggan-tang in a dose- and time-dependent manner. Whereas $TGF-{\beta}1-mediated$ induction of PAI-1 was suppressed by Injinchunggan-tang, expression of the $TGF-{\beta}1$ pathway genes such as TR-1, TR-II, Smad2, Smad3, and Smad4 was not affected by Injinchunggan-tang treatment. Injinchunggan-tang was found to inhibit $TGF-{\beta}1-induced$ cell proliferation of T3891 human fibroblast, and also abrogated $TGF-{\beta}1-mediated$ transcriptional up-regulation of CTGF, fibronectin, and collagen type I. Conclusions : This study strongly suggests that the liver cirrhosis-suppressive activity of Injinchunggan-tang may be derived at least in part from its inhibitory effect on $TGF-{\beta}1$ functions, such as blockade of $TGF-{\beta}1$ stimulation of fibroblast cell proliferation and fibrosis-related gene expression as well as expression of $TGF-{\beta}1$ itself.

  • PDF

Opposing Effects of Arkadia and Smurf on TGFβ1-induced IgA Isotype Expression

  • Choi, Seo-Hyun;Seo, Goo-Young;Nam, Eun-Hee;Jeon, Seong-Hyun;Kim, Hyun-A;Park, Jae-Bong;Kim, Pyeung-Hyeun
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.283-287
    • /
    • 2007
  • $TGF-{\beta}1$ induces Ig germ-line ${\alpha}$ ($GL{\alpha}$) transcription and subsequent class switching recombination (CSR) to IgA. In the present study, we investigated the roles of two E3-ubiquitin ligases, Smurfs (HECT type) and Arkadia (RING finger type) on $TGF{\beta}1$-induced IgA CSR. We found that over-expression of Smurf1 and Smurf2 decreased $TGF{\beta}1$-induced $GL{\alpha}$ promoter activity and strengthened the inhibitory effect of Smad7 on the promoter activity. Further, over-expression of Smurf1 and Smurf2 decreased both Smad3/4-mediated and Runx3-mediated $GL{\alpha}$ promoter activities, suggesting that the Smurfs can down-regulate the major $TGF-{\beta}1$ signaling pathway and decrease $GL{\alpha}$ gene expression. In parallel, the over-expressed Smurf1 decreased the expression of endogenous IgA CSR-predictive transcripts ($GLT_{\alpha}$, $PST_{\alpha}$, and $CT_{\alpha}$) and also $TGF{\beta}1$-induced IgA secretion. Conversely over-expression of Arkadia abolished the inhibitory effect of Smad7 on $TGF{\beta}1$-induced $GLT_{\alpha}$ expression and IgA secretion. Similar results were obtained in the presence of over-expressed Smad7 and Smurf1. These results indicate that Arkadia can amplify $TGF{\beta}1$-induced IgA CSR by degrading Smad7, which interacts with Smurf1. We conclude that Smurf and Arkadia have opposite roles in the regulation of $TGF{\beta}1$-induced IgA isotype expression.