DOI QR코드

DOI QR Code

Activin A Stimulates Mouse APCs to Express BAFF via ALK4-Smad3 Pathway

  • Kim, Jae-Hee (Department of Molecular Bioscience, College of Biomedical Science) ;
  • Seo, Goo-Young (Department of Molecular Bioscience, College of Biomedical Science) ;
  • Kim, Pyeung-Hyeun (Department of Molecular Bioscience, College of Biomedical Science)
  • Received : 2011.06.23
  • Accepted : 2011.07.13
  • Published : 2011.08.30

Abstract

Background: B cell-activating factor belonging to the TNF family (BAFF) is primarily expressed by macrophages and dendritic cells, and stimulates B cell proliferation, differentiation, survival, and Ig production. In the present study, we explored the effect of activin A on BAFF expression by APCs. Methods: To investigate the effect of activin A on BAFF expression by mouse APCs, we measured the level of BAFF expression at the transcriptional and protein levels using RT-PCR and ELISA. Results: Activin A markedly enhanced BAFF expression in mouse macrophages and dendritic cells at both the transcriptional and protein levels. SB431542, an activin receptor-like kinase 4 (ALK4) inhibitor, completely abrogated activin A-induced BAFF transcription. Furthermore, overexpression of DN-Smad3 abolished activin-induced BAFF expression at the transcriptional and protein levels. Conclusion: These results demonstrate that activin A can enhance BAFF expression through ALK4-Smad3 pathway.

Keywords

References

  1. Craxton A, Magaletti D, Ryan EJ, Clark EA: Macrophage- and dendritic cell--dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood 101;4464-71, 2003. https://doi.org/10.1182/blood-2002-10-3123
  2. Dubois B, Massacrier C, Vanbervliet B, Fayette J, Briere F, Banchereau J, Caux C: Critical role of IL-12 in dendritic cell-induced differentiation of naive B lymphocytes. J Immunol 161;2223-31, 1998.
  3. Dubois B, Vanbervliet B, Fayette J, Massacrier C, Van Kooten C, Briere F, Banchereau J, Caux C: Dendritic cells enhance growth and differentiation of CD40-activated B lymphocytes. J Exp Med 185;941-51, 1997. https://doi.org/10.1084/jem.185.5.941
  4. Fagarasan S, Honjo T: T-Independent immune response: new aspects of B cell biology. Science 290;89-92, 2000. https://doi.org/10.1126/science.290.5489.89
  5. Snapper CM, Mond JJ: A model for induction of T cell-independent humoral immunity in response to polysaccharide antigens. J Immunol 157;2229-33, 1996.
  6. Groom J, Kalled SL, Cutler AH, Olson C, Woodcock SA, Schneider P, Tschopp J, Cachero TG, Batten M, Wheway J, Mauri D, Cavill D, Gordon TP, Mackay CR, Mackay F: Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren's syndrome. J Clin Invest 109;59-68, 2002.
  7. Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, Holler N, Ambrose C, Lawton P, Bixler S, Acha-Orbea H, Valmori D, Romero P, Werner-Favre C, Zubler RH, Browning JL, Tschopp J: BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 189;1747-56, 1999. https://doi.org/10.1084/jem.189.11.1747
  8. Mackay F, Ambrose C: The TNF family members BAFF and APRIL: the growing complexity. Cytokine Growth Factor Rev 14;311-24, 2003. https://doi.org/10.1016/S1359-6101(03)00023-6
  9. Mackay F, Browning JL: BAFF: a fundamental survival factor for B cells. Nat Rev Immunol 2;465-75, 2002. https://doi.org/10.1038/nri844
  10. Sutherland AP, Mackay F, Mackay CR: Targeting BAFF: immunomodulation for autoimmune diseases and lymphomas. Pharmacol Ther 112;774-86, 2006. https://doi.org/10.1016/j.pharmthera.2006.06.002
  11. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T: Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102;553-63, 2000. https://doi.org/10.1016/S0092-8674(00)00078-7
  12. Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, Casali P, Cerutti A: DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 3;822-9, 2002.
  13. Kim PH, Kagnoff MF: Transforming growth factor beta 1 increases IgA isotype switching at the clonal level. J Immunol 145;3773-8, 1990.
  14. Lebman DA, Lee FD, Coffman RL: Mechanism for transforming growth factor beta and IL-2 enhancement of IgA expression in lipopolysaccharide-stimulated B cell cultures. J Immunol 144;952-9, 1990.
  15. McIntyre TM, Klinman DR, Rothman P, Lugo M, Dasch JR, Mond JJ, Snapper CM: Transforming growth factor beta 1 selectivity stimulates immunoglobulin G2b secretion by lipopolysaccharide- activated murine B cells. J Exp Med 177;1031-7, 1993. https://doi.org/10.1084/jem.177.4.1031
  16. Kim HA, Jeon SH, Seo GY, Park JB, Kim PH: TGF-beta1 and IFN-gamma stimulate mouse macrophages to express BAFF via different signaling pathways. J Leukoc Biol 83;1431-9, 2008. https://doi.org/10.1189/jlb.1007676
  17. Massague J: TGF-beta signal transduction. Annu Rev Biochem 67;753-91, 1998. https://doi.org/10.1146/annurev.biochem.67.1.753
  18. Lebrun JJ, Chen Y, Vale W. Receptor serine kinases and signaling by activins and inhibins. In: Aono T, Sugino H, Vale WW, editors. Inhibin, Activins and Flollistatin: regulatory functions in system and cell biology. New York: Springer-Verlag New York; p1-20, 1997.
  19. Shi Y, Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113;685-700, 2003. https://doi.org/10.1016/S0092-8674(03)00432-X
  20. Lee HJ, Seo GY, Kim HA, Kim PH: Activin A stimulates IgA expression in mouse B cells. Biochem Biophys Res Commun 366;574-8, 2008. https://doi.org/10.1016/j.bbrc.2007.12.008
  21. Park SR, Lee JH, Kim PH: Smad3 and Smad4 mediate transforming growth factor-beta1-induced IgA expression in murine B lymphocytes. Eur J Immunol 31;1706-15, 2001. https://doi.org/10.1002/1521-4141(200106)31:6<1706::AID-IMMU1706>3.0.CO;2-Z
  22. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P, Soppet D, Charters M, Gentz R, Parmelee D, Li Y, Galperina O, Giri J, Roschke V, Nardelli B, Carrell J, Sosnovtseva S, Greenfield W, Ruben SM, Olsen HS, Fikes J, Hilbert DM: BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285;260-3, 1999. https://doi.org/10.1126/science.285.5425.260
  23. Nardelli B, Belvedere O, Roschke V, Moore PA, Olsen HS, Migone TS, Sosnovtseva S, Carrell JA, Feng P, Giri JG, Hilbert DM: Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 97;198-204, 2001. https://doi.org/10.1182/blood.V97.1.198
  24. Chen YG, Wang Q, Lin SL, Chang CD, Chuang J, Ying SY: Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Exp Biol Med (Maywood) 231;534-44, 2006. https://doi.org/10.1177/153537020623100507
  25. Huang HM, Chang TW, Liu JC: Basic fibroblast growth factor antagonizes activin A-mediated growth inhibition and hemoglobin synthesis in K562 cells by activating ERK1/2 and deactivating p38 MAP kinase. Biochem Biophys Res Commun 320;1247-52, 2004. https://doi.org/10.1016/j.bbrc.2004.06.083
  26. Ogihara T, Watada H, Kanno R, Ikeda F, Nomiyama T, Tanaka Y, Nakao A, German MS, Kojima I, Kawamori R: p38 MAPK is involved in activin A- and hepatocyte growth factor- mediated expression of pro-endocrine gene neurogenin 3 in AR42J-B13 cells. J Biol Chem 278;21693-700, 2003. https://doi.org/10.1074/jbc.M302684200
  27. Zhang L, Deng M, Parthasarathy R, Wang L, Mongan M, Molkentin JD, Zheng Y, Xia Y: MEKK1 transduces activin signals in keratinocytes to induce actin stress fiber formation and migration. Mol Cell Biol 25;60-5, 2005. https://doi.org/10.1128/MCB.25.1.60-65.2005
  28. Castigli E, Wilson SA, Scott S, Dedeoglu F, Xu S, Lam KP, Bram RJ, Jabara H, Geha RS: TACI and BAFF-R mediate isotype switching in B cells. J Exp Med 201;35-9, 2005. https://doi.org/10.1084/jem.20032000
  29. Yamada T, Zhang K, Yamada A, Zhu D, Saxon A: B lymphocyte stimulator activates p38 mitogen-activated protein kinase in human Ig class switch recombination. Am J Respir Cell Mol Biol 32;388-94, 2005. https://doi.org/10.1165/rcmb.2004-0317OC
  30. Kim HA, Seo GY, Kim PH: Macrophage-derived BAFF induces AID expression through the p38MAPK/CREB and JNK/AP-1 pathways. J Leukoc Biol 89;393-8, 2011. https://doi.org/10.1189/jlb.1209787

Cited by

  1. BAFF and APRIL from Activin A–Treated Dendritic Cells Upregulate the Antitumor Efficacy of Dendritic Cells In Vivo vol.76, pp.17, 2016, https://doi.org/10.1158/0008-5472.can-15-2668
  2. In vivo amelioration of endogenous antitumor autoantibodies via low-dose P4N through the LTA4H/activin A/BAFF pathway vol.113, pp.48, 2016, https://doi.org/10.1073/pnas.1604752113