• Title/Summary/Keyword: sludges

Search Result 259, Processing Time 0.024 seconds

A Study on the Conditioning with Polymer and the Particle Size Distribution of Intermittent Aerobic Digestion Sludge (간헐포기 소화 슬러지의 고분자 응집제에 의한 개량과 입도 분포 변화에 관한 연구)

  • Kim, Hee-Jun;Kim, Seong-Hong;Choi, Jae-Seong
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • Synthetic organic polyelectrolytes can be used to condition sludges to enhance their dewaterability. Intermittent aerobic digestion is an useful digestion technology and has many advantages like neutral pH, low installation cost and easiness to operation. The objectives of this study were to investigate the dewaterability of intemittent aerobic digestion sludge and to find the relationship between dewaterability and particle size distribution change under the conditioning of intermittent aerobic digestion sludge by cationic polyelectrolyte. Digested sludge from intermittent aerobic digestion was used and cationic polyacrylamide polymer was added as a conditioner. CST(capillary suction time), TTF(time-to-filtration) were tested as a dewaterability index and the number of particle distribution was analyzed using particle size analyzer. The results indicate that cationic polyelectrolytes is useful to enhance dewaterability of intermittent aerobic digestion sludge. Mean particle diameter was increased as polymer dosage increased and its value was reached up to 100 mm on the condition of optimal cationic polymer dosage. CST and TTF are well correlated with mean particle diameter when the weighting order is 1.7. By the optimal conditioning with cationic polymer, particles in the filtrate are also reduced significantly and this means that conditioning is helpful to main stream by reducing SS loading from return flow.

A Study on the Composting of the Brewery and Nightsoil Mixed Sludge I - Influence of mixing ratio and agitation period in composting (맥주 및 분뇨슬러지 혼합물의 퇴비화에 관한 연구 I -혼합 및 교반주기가 퇴비화에 미치는 영향-)

  • 박종혁;김동수
    • Resources Recycling
    • /
    • v.8 no.4
    • /
    • pp.39-44
    • /
    • 1999
  • Nightsoil and brewery sludges usually contain a high concentration of organic matters. A composting study using reactors was carried out for the recycle of brewery wastewater sludge and nightsoil treatment sludge, which have been landfilled. A good composting process was obtained with a sludge mixing ratio of 1:1 and injual pH had no effect on temperature increase related to microbial activity. The injtial C/N ratio at approximarely 15 decreased to 13 without the increase in pH.. It was found that agitation of one time a week provided the most effective composting process.

  • PDF

Analysis of Microbial Community Structure in Biological Wastewater Treatment Process of Mixed Wastewater Treatment Facility using Environmental·Ecological Technique (환경·생태학적 기법을 이용한 혼합폐수 처리장의 생물학적 처리공정 내의 미생물 군집 특성 분석)

  • Son, Hyeng-Sik;Lee, Sang-Joon;Son, Hee-Jong
    • KSBB Journal
    • /
    • v.28 no.2
    • /
    • pp.80-85
    • /
    • 2013
  • The bacterial community structure in a biological reactor fed influent from a wastewater treatment system was investigated by denaturing gradient gel electrophoresis (DGGE) and in situ hybridization. Sludges were collected from three biological reactors (aerobic, oxic, and anoxic tanks) at the M wastewater treatment facility (WTF). The influent of the MWTF consisted of mixed tannery wastewater (40~65%) and seafood wastewater (35~60%). The treatment processes resulted in a removal efficiency for BOD (biochemical oxygen demand) and COD (chemical oxygen demand) of 83.6~98.2% and 72.8~84.6%, respectively for tannery wastewater than for seafood wastewater resulted in greater survival of biomass in the biological reactors and a higher removal of BOD, COD, and T-N of about 8~18%. In contrast, addition of greater amounts of seafood wastewater decreased the amount of biomass in the bioreactors due to the increasing concentration of chromium from that wastewater and it also. The dominant bacterial species during the high seafood wastewater input period were Burkholderia cepacia (JX901049) and an uncultured bacterium (JF247555), while Pseudomonas geniculata (HQ256559) was dominant during the high tannery wastewater input period. Flavobacteriumsp. BF.107 (FM173271) and Hyphomicrobium zavarzinii (Y14306) were dominant under anoxic conditions.

Pore properties and Microstructure on the each regions of a Light-Weight Aggregate using Glass Abrasive Sludge (유리연마슬러지를 사용한 경량골재의 미세구조 및 기공 특성)

  • Kwon, Choon-Woo;Chu, Yong-Sik;Kim, Young-Yup;Jung, Suk-Joe;Song, Hun;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.533-536
    • /
    • 2006
  • A light-weight aggregate with a surface layer was fabricated using glass abrasive sludge and expanding agents. The glass abrasive sludges were mixed with expanding agents ($Fe_2O_3,\;graphite,\;CaCO_3$) and formed into precursors. These precursors were sintered in the range of $700-900^{\circ}C$ for 20min. The sintered light-weight aggregate had a surface layer with smaller pores and an inner region with larger pores. The surface layer and pores controlled the water absorption ratio and physical properties. As the expanding agent fraction and the sintering temperature increased, the porosity and pore size increased. The light-weight aggregate with $Fe_2O_3$ and graphite as the expanding agents had a low water absorption ratio while the porous material with $CaCO_3$ as the expanding agent had a higher water absorption ratio and more open pores.

  • PDF

FUNDAMENTAL STUDY ON THE RECOVERY AND REMOVAL OF WHITE PHOSPHORUS FROM PHOSPHORUS SLUDGE

  • Jung, Joon-Oh
    • Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • Electro-thermal production of white phosphorus(WP, P4) generates substantial amount of highly toxic phossy water and sludges. Because of their high phosphorus contents and lack of reliable processing technology, large tonnages of these hazardous wastes have accumulated from current and past operations in the United States. In this study, two different methods for treatment of phosphorus sludge were investigated. These were bulk removal of WP by physical separation(froth flotation) and transformation of WP to oxyphosphorus compounds by air oxidation in the sludge medium. Kerosene, among other collectors, resulted in selective flotation of WP from the associated mineral gangue. Solvent action of kerosene occurring on the WP surface(by rendering WP particles hydrophobic) might produce the high selectivity of WP. The WP recovery in the froth was 79.3% from a sludge assaying 34.2% of WP. In the oxidation study, air gas was dispersed in the sludge medium by the rapid rotation of the impeller blades. The high level of sludge agitation intensity caused a fast completion of the oxidation reactions and it resulted in the high percentage conversion of WP to PO4-3 with PO3-3 making up almost all portion of oxyphosphorus compounds. The WP analysis on the treated sludge showed that supernatant solution and solid residue contained an average of 4.2 μg/L and 143 ppm respectively from the sludge containing about 26 g of WP. Further investigation will be required on operational factors to better understand the processes and achieve an optimum condition.

A Study on the Mechanism of Solved Phosphate and $Ca^{2+}$ ion in Wastewater (廢水에서 용존隣(P)과 $Ca^{2+}$이온의 反應機構에 대한 점토)

  • 이순기;강현찬
    • Resources Recycling
    • /
    • v.10 no.4
    • /
    • pp.24-33
    • /
    • 2001
  • For making a high degree of efficiency, this study attempts to gather each arisen-sludge from experiments and examine into its characteristics, in order to compare the biological reason of removing phosphorus with sintered body using calcite and the artificial reason of removing with a chemical reagent. First, it can be seen that sludge, which is identified CaCO$_3$, of 0.1∼0.2$\mu$m is regularly formed when using sintered body, calcite. And it is one of the results of the chemical methods in order to remove phosphorus that can be seen that sludges of 100∼50 $\mu$m are formed and that the forms of Ca$_2$P$_2$O$\_$7/, Ca$_3$(PO$_4$)$_2$$.$nH$_2$O, $\beta$-Ca$_2$P$_2$O$\_$7/ are shown when using a reagent, CaO dissolved water. The other of the results of the chemical methods can be seen that a lumpof sludge is formed when using wastewater and a reagent Ca$^2$$\^$+/ are used, and that the lump consists of Ca$_3$(PO$_4$)$_2$$.$nH$_2$O와 Ca$_2$H$_2$P$_4$O$\_$14/.

  • PDF

Release of Nutrients from Different Wasted Activated Sludges by Microwave Heating (다양한 활성 슬러지 공정에서 얻은 잉여 슬러지의 마이크로웨이브 가온과 영양물질의 방출)

  • Yang, Hoiweon;Ahn, Johwan;Kim, Jangho;Kim, Junghwan
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.701-708
    • /
    • 2018
  • Chemical batch tests were conducted to investigate the amount of nutrients that were released from the wasted activated sludge during microwave heating. For this study, three types of activated sludge were obtained from $A_2/O$, MLE and oxidation ditch (OD) processes. Polyphosphate-accumulating organisms in the activated sludge have a unique trait: they releases phosphate from the cell when they are exposed to high temperatures. The sludge obtained from the $A_2/O$ process released the largest amount of phosphate, followed by those from the MLE and OD processes. The release of phosphate increased with increasing polyphosphate content in the sludge under strongly alkaline or acidic conditions. Furthermore, ammonia and heavy metals were released with phosphorous. The largest amount of ammonia was observed from the sludge obtained from the MLE process. The release of heavy metals strongly depends on the pH conditions. Therefore, the chemical analysis results strongly suggest that both phosphorus and ammonia react with $Mg^{2+}$ or $Ca^{2+}$ to form metal complexes such as magnesium ammonium phosphate or hydroxyapatite under alkaline conditions.

Development of Inorganic Sludge Drying System Technology Applied with Ejector by Air Velocity (이젝터를 적용한 무기성 슬러지 건조시스템 기술개발)

  • Cho, En-man;Jeong, Won-hoon;Kim, Dong-keon;Kim, Bong-hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.35-41
    • /
    • 2022
  • The moisture content of many inorganic sludges is less than 70% during dewatering. Hence, a mono or piston pump cannot feed the sludge dryer. Thus, most inorganic sludge should be moved to a landfill or recycled directly without any reduction method. This development was invented to apply cyclone dryers using air and specially designed for the continuous injection of sludge sources by negative pressure and high air velocity for low moisture inorganic matter. Therefore, wastewater sludge and raw water treatment sludge discharged from various industrial fields might be settled by this development. The cyclone dryer was commercialized useful as moisture reduction equipment. This development was applied using a sludge injection system for sludge feeding and under the cooperation of ejector design computational fluid dynamics. Furthermore, this paper presented good ejector model results, blowing an airflow of 264 m3/min at an actual performance test.

Application of activated carbon induced ballasted flocculation for improving activated sludge settleability (활성슬러지 침전성 향상을 위한 활성탄 가중응집제 적용 연구)

  • Kim, Yongbum;Yang, Hyeji;Choi, Younggun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.2
    • /
    • pp.153-162
    • /
    • 2021
  • The effects of activated carbon originated Ballasted Flocculant (BF) on the settleability of activated sludge and the recovery of BF by Hydro-cyclone (HC) were analyzed experimentally. Two kinds of BF (M-I: 125-250 ㎛, M-II: 250-425 ㎛ in dia.) and three kinds of activated sludges with different SS concentration (2,300-7,100 mg/L) were applied for this study. With the dosage variation of BF from 0.14 to 1.3 g-BF/g-SS, we could obtain 24-31% improvement in SV30 (Sludge Volume after 30min sedimentation) for the lowest SS concentration sludge (2,300 mg/L). Whereas the SV30 improvement was much higher as 44-48% for the highest SS concentration sludge (7,100 mg/L). The settling characteristics of the sludge with BF followed Vesilind model the best among three models (Vesilind, Takacs and Cho model). HC could effectively separate BF with the separation efficiency of 70-90% and over 95% separation efficiency could be obtained when the HC was applied twice.

Acceleration of Biological Denitrification by Using Bioelectrochemical Reactor (생물전기화학반응기를 이용한 생물학적 탈질반응의 촉진)

  • Chun, Ji-Eun;Yu, Jae-Cheul;Park, Young-Hyun;Seon, Ji-Yun;Cho, Sun-Ja;Lee, Tae-Ho
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.989-996
    • /
    • 2012
  • Nitrate contamination of water environments can create serious problems such as eutrophication of rivers. Conventional biological processes for nitrate removal by heterotrophic denitrification often need additional organic substrates as carbon sources and electron donors. We tried to accelerate biological denitrification by using bioelectrochemical reactor (BER) in which electrode works as an electron donor. Denitrification activity of 8 environmental samples from various sediments, soils, groundwaters, and sludges were tested to establish an efficient enrichment culture for BER. The established enrichment culture from a soil sample showed stable denitrification activity without any nitrite accumulation. Microbial community analysis by using PCR-DGGE method revealed that dominant denitrifiers in the enrichment culture were Pantoea sp., Cronobacter sakazakii, and Castellaniella defragrans. Denitrification rate ($0.08kg/m^3{\cdot}day$) of the enrichment culture in BER with electrode poised at -0.5 V (vs Ag/AgCl) was higher than that ($2.1{\times}10^{-2}kg/m^3{\cdot}day$) of BER without any poised potential. This results suggested that biological denitrification would be improved by supplying potential throughout electrode in BER. Further research using BER without any organic substrate addition is needed to apply this system for bioremediation of water and wastewater contaminated by nitrate.