• Title/Summary/Keyword: sludge granules

Search Result 36, Processing Time 0.028 seconds

Denitrification of Anaerobic Sludge in Hybrid Type Anaerobic Reactor(II): Glucose as Substrate (Hybrid type 반응조에서의 혐기성 슬러지의 탈질(II): 기질이 글루코스인 경우)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.2
    • /
    • pp.196-206
    • /
    • 2000
  • Methanogenesis and denitrification in an upflow sludge baffled filter (UBF) reactor were studied using glucose as a fermentative substrate. Experiments were carried out to investigate how to reduce ammonification by changing alkalinity and $COD/NO_3-N$ ratio. Characteristics of granular sludges were examined by specifics methanogenic activity(SMA) and specific denitrification rate(SDR) tests. Microstructures of granules were examined using a scanning electron microscopy(SEM). It was found that COD was removed efficiently owing to the diverse microorganisms. In nitrate conversion, not only $COD/NO_3-N$ ratio but also influent alkalinity played important role in the ratio of denitrification and ammonification of nitrate. This reactor achieved over 95% COD and 99% nitrate removal efficiencies when influent contained 4000 mgCOD/L and $700mgNO_3-N/L$ at the hydraulic retention time of 24 hours. As $COD/NO_3-N$ ratio decreased, granular methanogenic activities using acetate and butyrate as substrates increased while activities using propionate and glucose decreased. There were three types in granules according to the surface color; gray, yellowish gray, and black. Gray or yellowish gray-colored granules were composed two layers, which were composed of black inner side and gray or yellowish gray surface substances. SEM illustrated that both were rod-type and cocci-type microorganisms resembling Methanothrix sp. and Methanococci sp. This study showed that by controlling the influent alkalinity and $COD/NO_3-N$ ratio, ammonification and denitrification could be manipulated.

  • PDF

Physico-chemical and biological characteristic analysis of stratified anaerobic granules in a full-scale UASB reactor (실규모 UASB반응조 내부 계층화된 혐기성 그래뉼의 물리화학적 & 생물학적 특성 조사)

  • Jo, Hongmok;Kim, Minsang;Shin, Seung Gu;Cho, Si-Kyung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.33-40
    • /
    • 2021
  • In this study, the physico-chemical and biological characteristics of anaerobic granular sludge at different heights of a full-scale UASB reactor (UASBr) were investigated. Granular sludge was taken from 1 m, 2 m, and 3 m above the ground level in the UASBr. The morphological analysis showed that the upper part had bigger granules and the lower part had rounder granules. The ANOVA test confirmed that the mean size and the roundness of the granules had statistically significant difference along the height at 95% confidence level, and there was a significant negative linear relationship between the size and roundness (r=-0.40, p<0.05). A SMA test using acetic, propionic and butyric acids showed that granules from 2 m height had the highest specific methanogenic activity. The EPS contents were also unequal to each height, with 2 m showing the highest content. These findings could be helpful to understand the different characteristics of stratified anaerobic granules in full-scale UASBr and maintain the reactor performance.

Autotrophic Perchlorate-Removal Using Elemental Sulfur Granules and Activated Sludge: Batch Test (원소 황 입자와 활성 슬러지를 이용한 독립영양방식의 퍼클로레이트 제거: 회분배양연구)

  • Han, Kyoung-Rim;Kang, Tae-Ho;Kang, Hyung-Chang;Kim, Kyung-Hun;Seo, Deuk-Hwa;Ahn, Yeong-Hee
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1473-1480
    • /
    • 2011
  • Perchlorate ($ClO_4^-$) is a contaminant found in surface water and soil/ground water. Microbial removal of perchlorate is the method of choice since microorganisms can reduce perchlorate into harmless end-products. Such microorganisms require an electron donor to reduce perchlorate. Conventional perchlorate-removal techniques employ heterotrophic perchlorate-reducing bacteria that use organic compounds as electron donors to reduce perchlorate. Since continuous removal of perchlorate requires a continuous supply of organic compounds, heterotrophic perchlorate removal is an expensive process. Feasibility of autotrophic perchlorate-removal using elemental sulfur granules and activated sludge was examined in this study. Granular sulfur is relatively inexpensive and activated sludge is easily available from wastewater treatment plants. Batch tests showed that activated sludge microorganisms could successfully degrade perchlorate in the presence of granular sulfur as an electron donor. Perchlorate biodegradation was confirmed by molar yield of $Cl^-$ as the perchlorate was degraded. Scanning electron microscope revealed that rod-shaped microorganisms on the surface of sulfur particles were used for the autotrophic perchlorate-removal, suggesting that sulfur particles could serve as supporting media for the formation of biofilm as well. DGGE analyses revealed that microbial profile of the inoculum (activated sludge) was different from that of the biofilm sample obtained from enrichment culture that used sulfur particles for $ClO_4^-$-degradation.

Divergence of Granular Sludges and Microbial Communities in Two Types of Anaerobic Reactors Treating Different Wastewaters

  • Qin, Xianchao;Li, Chunjie;Gao, Yueshu;Zhang, Zhenjia;Zhang, Xiaojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.633-644
    • /
    • 2019
  • An advanced anaerobic expanded granular sludge bed (AnaEG) and an internal circulation (IC) reactor, which were adopted to treat starch processing wastewater (SPW) and ethanol processing wastewater (EPW), were comprehensively analyzed to determine the key factors that affected the granules and microbial communities in the bioreactors. The granule size of $900{\mu}m$ in the AnaEG reactor was smaller than that in the IC reactor, and the internal and external morphological structures of the granular sludge were also significantly different between the two types of reactors. The biodiversity, which was higher in the AnaEG reactor, was mainly affected by reactor type. However, the specific microbial community structure was determined by the type of wastewater. Furthermore, the dominant methanogens of EPW were mainly Methanosaeta and Methanobacterium, but only Methanosaeta was a major constituent in SPW. Compared with the IC reactor, characteristics common to the AnaEG reactor were smaller granules, higher biodiversity and larger proportion of unknown species. The comparison of characteristics between these two reactors not only aids in understanding the novel AnaEG reactor type, but also elucidates the effects of reactor type and wastewater type on the microbial community and sludge structure. This information would be helpful in the application of the novel AnaEG reactor.

Denitrification of Anaerobic Sludge in Hybrid type Anaerobic Reactor(I): Acetate as Substrate (Hybrid type 반응조에서의 혐기성 슬러지의 탈질(I): 초산을 기질로 사용한 경우)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.35-44
    • /
    • 1999
  • In this study, it was attempted to remove nitrate and carbon in a single-stage reactor using acetate as substrate. Hybrid type upflow sludge baffled filter reactor was adopted using anaerobic sludge. Sludge bed in the bottom of reactor was intended to remove carbon and nitrate by denitrification and methanogenesis. And floating media in the upper part of reactor were intended to remove remaining carbon which was not removed due to the inhibition of nitrogen oxide on methane producing bacteria. The reactor removed over 96% of COD and most of nitrate with volumetric loading rate of $4.0kgCOD/m^3{\cdot}day$, hydraulic retention time of 24hr, 4,000mgCOD/L, and $266mgNO_3-N/L$. Nitrate in anaerobic sludge was converted to nitrogen gas(denitrification) or ammonia (ammonification) according to pH of influent, COD removal efficiency was easily affected by the change of volumetric loading rates and nitrate concentration. And when influent pH was about 4.7, most nitrate changed to ammonia while when influent pH was about 6.8~7.0, most nitrate denitrified independent of $COD/NO_3-N$ ratio. Most granules were gray and a few were black. In gray-colored granule, black inner side was covered with gray substance and SEM illustrated Methanoccoci type microorganisms which were compact spherical shape. Anaerobic filter removed residual COD effectively which was left in sludge bed due to the inhibition of nitrogen oxide.

  • PDF

Inhibition Mechanism of Ammonia Nitrogen on the Granules in an Upflow Anaerobic Sludge Blanket Reactor (암모니아성 질소 첨가에 따른 상향류 혐기성 블랭킷 반응조내 입상슬러지의 저해 기작)

  • Lee, Chae Young;Han, Sun Kee;Shin, Hang Sik
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.993-997
    • /
    • 2007
  • The upflow anaerobic sludge blanket (UASB) reactor can be effective for treating simple organic compounds containing high concentration of ammonia nitrogen. The chemical oxygen demand (COD) removal efficiency was about 80% at ammonia nitrogen concentration up to 6,000 mg-N/L. This result also showed that it would be possible to treat propionate effectively at free ammonia nitrogen concentration up to 724 mg-N/L if sufficient time was allowed for adaptation. However the specific methanogenic activity (SMA) of granule was lower than that of granule in the reactor with lower ammonia nitrogen concentration. At 8,000 mg-N/L, the inhibition of high ammonia concentration was observed with evidence of increase of the volatile suspended solids (VSS) concentration in the effluent. It might be ascribed to the decrease in the content of extracellular polymer (ECP), which resulted to the sloughing off of obligated proton-reducing acetogens and heterogenotrophic methanogens from the exterior of granular sludge. This caused a great portion of the finely sludge to be easily washed out. Therefore, failure to maintain the balance between these two groups of microorganism cause accumulation of the hydrogen partial pressure in the reactor, which could have inhibited the growth of acetate utilizing methanogens.

Morphological characteristics and nutrient removal efficiency of granular PAO and DPAO SBRs operating at different temperatures

  • Geumhee Yun;Jongbeom Kwon;Sunhwa Park;Young Kim;Kyungjin Han
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Biological nutrient removal is gaining increasing attention in wastewater treatment plants; however, it is adversely affected by low temperatures. This study examined temperature effects on nutrient removal and morphological stability of the granular and denitrifying phosphorus accumulating organisms (PAO and DPAO, respectively) using sequencing batch reactors (SBRs) at 5, 10, and 20 ℃. Lab-scale SBRs were continuously operated using anaerobic-anoxic and anaerobic-oxic cycles to develop the PAO and DPAO granules for 230 d. Sludge granulation in the two SBRs was observed after approximately 200 d. The average removal efficiency of soluble chemical oxygen demand (SCOD) and PO43--P remained >90% throughout, even when the temperature dropped to 5 ℃. The average removal efficiency of NO3--N remained >80% consistently in DPAO SBR. However, nitrification drastically decreased at 10 ℃. Hence, the removal efficiency of NH4+-N was decreased from 99.1% to 54.5% in PAO SBR. Owing to the increased oxygen penetration depth at low temperatures, the influence on nitrification rates was limited. The granule in DPAO and PAO SBR was observed to be unstable and disintegrated at 10 ℃. In conclusion, morphological characteristics showed that changed conversion rates at low temperatures in aerobic granular sludge altered both nutrient removal efficiencies and granule formation.

Manufacturing of Sintered Lightweight Aggregate using Paper Mill Sludge Ash (제지 슬러지 소각재를 이용한 소성 경량골재의 제조)

  • 문경주;김재신;소양섭
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.114-122
    • /
    • 2001
  • The purpose of this study was to manufacture sintered lightweight aggregate using paper sludge ash and to evaluate the qualities of the aggregate according to various mix proportions, conditions of pelletization and sintering. The paper sludge ash alone, due to its mineral and chemical compositions could not gain suitable expansion and strength. Hence, it was essential to add mineral additives such as clay, fly ash etc. The optimum muting ratio range determined in this study is as follows , paper sludge ash 30∼50 %, clay 30∼50 %, fay ash 0∼40 %, Paper sludge 0∼10% and hematite 2∼3 %(for manufacturing lightweight aggregate both for non-structural and structural concrete). It was possible to manufacture various lightweight aggregate whose dry specific gravity ranged about from 0.6 to 1.4 by using this optimum mixing ratio. From the test results of the qualities of aggregate, it showed that the 10% granules crushing value test and water absorption percentage ranged about 5∼10 ton and 10∼20%. Thus, it was favorably comparable to those of the imported aggregate. The manufactured lightweight aggregate could be used for structural concrete and non-structural concrete.

Quality Properties Sintering Lightweight Aggregate for Structural Concrete according to manufacturing Condition (제조 조건에 따른 구조체용 소성 경량골재의 품질 특성)

  • 고대형;김재신;김상운;문경주;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.339-344
    • /
    • 2000
  • The purpose of this study is to evaluate qualities of lightweight aggregate for structural concrete according to mixing proportions, pelletizer condition, sintering condition and to choose the suitable main and sub material. Main material used paper sludge ash(PSA) and sub material used clay, fly-ash and paper sludge. The aggregates are sintered after granulating at the various condition. As the result of test, quality difference of aggregate showed clear according to the mixing proportions and sintering conditions. It was possible to manufacture lightweight aggregate for structural concrete that dry specific gravity was ranged about 0.9 to 1.4 also the test results of the aggregates showed same physical properties compared with abroad product as 10% granules crushing value from 5 or 10% and absorption percentage from 10 to 20%.

  • PDF

Microbial Communities of Activated Sludge Performing Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Supplied with Glucose

  • Jeon, Che-Ok;Seung, Han-Woo;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.385-393
    • /
    • 2003
  • Microbial communities were analyzed in an anaerobic/aerobic sequencing batch reactor (SBR) fed with glucose as a sole carbon source. Scanning electron microscopy (SEM) showed that tetrad or cuboidal packet bacteria dominated the microbial sludge. Quinone, slot hybridization, and 165 rRNA gene sequencing analyses showed that the Proteobacteria beta subclass and the Actinobacteria group were the main microbial species in the SBR sludge. However, according to transmission electron microscopy (TEM), the packet bacteria did not contain polyphosphate granules or glycogen inclusions, but only separate coccus-shaped bacteria contained these, suggesting that coccus-shaped bacteria accumulated polyphosphate directly and the packet bacteria played other role in the enhanced biological phosphorus removal (EBPR). Based on previous reports, the Actinobacteria group and the Proteobacteria beta subclass were very likely responsible for acid formation and polyphosphate accumulation, respectively, and their cooperation achieved the EBPR in the SBR operation which was supplied with glucose.