• 제목/요약/키워드: slow-released drug

검색결과 7건 처리시간 0.026초

Gentamicin/CTMA/Montmorillonite as Slow-Released Antibacterial Agent

  • Fatimah, Is;Hidayat, Habibi;Purwiandono, Gani;Husein, Saddam;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제31권6호
    • /
    • pp.367-374
    • /
    • 2021
  • This paper presents the characteristics of gentamicin-loaded into cetyl trimethyl ammonium intercalated montmorillonite (GtM/CTMA/Mt) as a hybrid composite for a slow-released antibacterial delivery systems. The work describes the successful immobilization of gentamicin into the interlayers of surfactant-modified montmorillonite. Physicochemical characterization of the material is carried out by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. The kinetics of the gentamicin release is investigated by in vitro study and analyzed based on UV-Vis spectrometry. In addition, antibacterial study is performed towards Klebsiella pneumoniae Staphylococcus aureus, Escherichia coli, and Streptococcus pyogenes. The results show that the gentamicin loading into CTMA/Mt increases the effectiveness of the antibacterial activity, as shown by the higher inhibition zone for all tested bacteria, compared to gentamicin as a positive control. The kinetics study suggests that the gentamicin release obeys the modified Korsmeyer-Peppas model. The physicochemical study and activity test demonstrate the feasibility of the GtM/CTMA/Mt for practical applications.

Preparation and In Vivo Evaluation of Huperzine A-Loaded PLGA Microspheres

  • FU XU-DONG;GAO YONG-LIANG;PING QI-LENG;Ren Tang
    • Archives of Pharmacal Research
    • /
    • 제28권9호
    • /
    • pp.1092-1096
    • /
    • 2005
  • Huperzine A-loaded microspheres composed of poly(D,L-lactide-co-glycolide) were prepared by an O/w emulsion solvent evaporation method. The characterization of the microspheres such as drug loading, size, shape and release profile was described. The in vitro release in the initial 7 days was nearly linear with $10\%$ released per day. Thereafter drug release rate became slow gradually and about $90\%$ drug released at day 21. The in vitro release rate determined by dialysis bag method had a good correlation with the in vivo release rate. Huperzine A aqueous solution was intramuscularly injected (i.m.) at 0.4mg/kg and microspheres were intra­muscularly injected at 8.4 mg eq huperzine A/kg in rats. The maxium plasma concentration $(C_{max})$ after i.m. microspheres was only $32\%$ of that after i.m. solution. Drug in plasma could be detectd until day 14 and about $5\%$ of administered dose was residued at the injection site at day 14. The relative bioavailability of huperzine A microspheres over a period of 14 days was $94.7\%$. Inhibition of acyecholinesterase activity (AchE) in rat's cortex, hippocampus and striatum could sustain for about 14 days. In conclusion, huperzine A-loaded microspheres possessed a prolonged and complete drug release with significant inhibition of AchE for 2 weeks in rats.

Synthesis and Drug-Releasing Behavior of Various Polymeric Prodrugs of PGE1 with PEG and Its Derivative as Polymer Carriers

  • Lee, Chan-Woo
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권4호
    • /
    • pp.484-493
    • /
    • 2007
  • Two polymeric prodrugs of PGE1 (prodrugs IVg and PNg) were newly synthesized. The drug conjugation proceeded in quantitative yield without decomposition of PGE1 to PGA1. With two types conjugates, PEG-PGE1 and PN-PGE1 with different spacer groups, we first discovered a possibility of slow release of PGE1 in blood circulatory system. PGE1 is conjugated with PEG and PN through the long alkylene spacers, and their availability as polymeric prodrugs is evaluated. Their drug-releasing behavior was examined both in phosphate buffer (pH=7.4) and rat plasma. Each prodrug was known to be highly stabile in the buffer solution. The drug-releasing rate became much faster in rat plasma than in the buffer solution due to the acceleration by the plasma enzymes. The drug-release was found to reach a plateau in rat plasma because the released PGE1 or its derivatives may be captured or decomposed by the plasma proteins. The slower drug-releasing rate of pro drug PNg in rat plasma is reasonably attributed to the molecular aggregation due to the hydrophobic bonding between the PGE1 moieties and spacers.

압축코팅법에 의한 3단계 약물방출형 지속성제제의 제조 및 용출특성 (Preparation and Dissolution Characteristics of the Compression-Coated Controlled Release Tablet Exhibiting Three-step Release)

  • 김철수;권혁노;차봉진;권종원;양중익;민신홍
    • Journal of Pharmaceutical Investigation
    • /
    • 제22권2호
    • /
    • pp.133-137
    • /
    • 1992
  • A novel oral controlled release tablet which may offer more uniform drug level in the body than simple zero-order was developed. The tablet is composed of three layers; outer film layer, middle part compression-coated hydroxypropylmethylcellulose (HPMC) matrix layer, and inner core layer. Each layer contains nicardipine HCl as a model drug. In vitro dissolution test showed that the tablet released the drug in clear three steps; a rapid initial release, followed by a constant rate of release, and then a second phase of fast release of drug. The dissolution characteristics could be modified easily by changing the grade of HPMC, thickness of matrix layer, content of methylcellulose in matrix layer, content of active ingredient in each layer. The pH of dissolution medium did not affect the release profile. This three-step release system is expected to raise the blood concentration rapidly to effective level and to maintain effective blood level longer than simple slow-release systems.

  • PDF

Preparation and In vitro Release Characteristics of Hydrophilic Albumin Microspheres Containing Methotrexate and Methotrexate-Human Serum Albumin Conjugates

  • Hwang, Sung-Joo;Lee, Myung-Gulll;Kim, Chong-Kook
    • Archives of Pharmacal Research
    • /
    • 제15권2호
    • /
    • pp.162-168
    • /
    • 1992
  • Release characteristics of five different types of hydrophilic albumin microspheres (HAM) containing different ratios of methotrexate-albumin (MTX-HSA) conjugates to free MTX: 1 : 0 (HAMC), 3 :1 (HAMC 3F), 1 :1 (HAMCF), 1:3 (HAMCF3) and 0 : 1 (HAMF) were investigated in the absence or presence of protease using dissolution tester. In all the HAMs studied except HAMC, the MTX was released bi-exponentially in the absence of protease; an initial fast release period up to approximately 6h, and thereafter the release rate was very much slower. The fast release of MTX from the HAMs (such as HAMC3F, HAMCF, HAMCF3 and HAMF) at the initial phase in probably due to the release of "physically associated" MTX from the core of the HAMs. The initial rate constants were 7.2, 8.7, 8.5 and 5.9 times greater than the second rate constants for HAMF, HAMCF3, HAMCF and HAMC3F, respectively. MTX release from HAMC was very slow and mono-phasic. It was at most 2.2% of the total entrapped amount by 24 h. The protease accelerated the release of MTX from the HAMs. The percentages of MTX released from HAMs up to 24 h were 100, 89.0, 75.0, 66.0 and 61.0% for HAMF, HAMCF3, HAMCF, HAMC3F and HAMC, respectively in the presence of protease and the corresponding values in the absence of protease were 30.2 19.0, 10.0, 6.5 and 2.2%, respectively. In vitro release of MTX in the presence of protease varied according to the ratios of MTX-HSA conjugates to MTX; the data set from HAMF, HAMCF3 and HAMCF fits better to monophasic first-order profile more adequately than to zero-order profile, that of HAMC3 monophasic first-order, and that of HAMC to bi-phasic zero-order. Above results suggested that zero-order release rate can be achieved by adjusting the ratio of MTX-HSA conjugates to MTX in the preparation of HAMs such as HAMC3F.as HAMC3F.

  • PDF

Preparation and Characterization of Cisplatin-Incorporated Chitosan Hydrogels, Microparticles, and Nanoparticles

  • Cha, Ju-Eun;Lee, Won-Bum;Park, Chong-Rae;Cho, Yong-Woo;Ahn, Cheol-Hee;Kwon, Ick-Chan
    • Macromolecular Research
    • /
    • 제14권5호
    • /
    • pp.573-578
    • /
    • 2006
  • Three different, polymer-platinum conjugates (hydrogels, microparticles, and nanoparticles) were synthesized by complexation of cis-dichlorodiammineplatinum(II) (cisplatin) with partially succinylated glycol chitbsan (PSGC). Succinic anhydride was used as a linker to introduce cisplatin to glycol chitosan (GC). Succinylation of GC was investigated systematically as a function of the molar ratio of succinic anhydride to glucosamine, the methanol content in the reaction media, and the reaction temperature. By controlling the reaction conditions, water-soluble, partially water-soluble, and hydrogel-forming PSGCs were synthesized, and then conjugated with cisplatin. The complexation of cisplatin with water-soluble PSGC via a ligand exchange reaction of platinum from chloride to the carboxylates induced the formation of nano-sized aggregates in aqueous media. The hydrodynamic diameters of PSGC/cisplatin complex nano-aggregates, as determined by light scattering, were 180-300 nm and the critical aggregation concentrations (CACs), as determined by a fluorescence technique using pyrene as a probe, were $20-30{\mu}g/mL$. The conjugation of cisplatin with partially water-soluble PSGC, i.e., borderline between water-soluble and water-insoluble PSGC, produced micro-sized particles $<500{\mu}m$. Cisplatin-complexed PSGC hydrogels were prepared from water-insoluble PSGCs. All of the cisplatin-incorporated, polymer matrices released platinum in a sustained manner without any significant initial burst, suggesting that they may all be useful as slow release systems for cisplatin. The release rate of platinum increased with the morphology changes from hydrogel through microparticle to nanoparticle systems.

설린닥의 경구용 지속성 제제설계 및 용출특성 (The Formulation and Dissolution Properties of Oral Sustained Release Sulindac Delivery System)

  • 이계주;박선희;서성수;황성주
    • 약학회지
    • /
    • 제41권1호
    • /
    • pp.48-59
    • /
    • 1997
  • Sustained release matrix tablets, pellets, and coated pellets for the delivery of sulindac were prepared using cellulose derivatives at various ratios, and evaluated for the dis solution pattern. The release of sulindac, from matrix tablets prepared with low viscosity HPMC was relatively fast, and especially the tablets made of Metolose SM released all of sulindac within 1 hr. The release of drug from tablets made of other HPMC derivatives were retarded in the order of the following: Pharmacoat 645>Pharmacoat 606>Pharrnacoat 606+HPC-L>HPC-L. The most sustained release pattern was observed with the preparation of high viscous polymer. Metolose 90 SH. While release of sulindac, from matrix type pellet containing 10mg/cap of Metolose 90 SH or 60 SH was completed within 1 hr, a prolonged release formulation (30% in 1 hr) was obtained by the inclusion of EC. Pellets coated with HPMC showed a fast release pattern (${\geq}$ 80% within 2 hrs), whereas pellets coated with HPMC and EC (molar ratio 1 : 1) showed a sustained release pattern (${\geq}$ 80% in 12 hrs), vath the release from EC pellets being the most sustained. Fast (naked) and slow release pellets coated with EC, Metolose 60SH 50cps and propylene glycol. and enteric pellets coated with HPMCP 55 and Myvacet$^{\circledR}$ were prepared, and combined at various ratios for the assessment of dissolution pattern. The result indicates the possibility that the development of 24 hr sustained release delivery systems containing sulindac for oral administration could be achieved by means of combining sustained and fast release pellets at a proper portion.

  • PDF