• Title/Summary/Keyword: slope way

Search Result 227, Processing Time 0.026 seconds

A Study on Slope Reinforcing Effects Using Soil Stabilizer (토사안정제를 이용한 비탈면보강 효과에 관한 연구)

  • Kim, Ki-Hwan;Kim, Yu-Tae;Lee, Seung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.10
    • /
    • pp.5-14
    • /
    • 2010
  • The slope stability method using the soil stabilizer is a way to ensure that the slope stability from reinforcing method is environmentally friendly. However, the reinforcing method does not ensure slope stability for lack of research on the reinforcement effect of the mixture with soil. So the application of this method implies difficult technical issues. In this research, reinforcement effect is investigated according to the different ratio of mixture. And the optimum reinforcement depth is proposed according to the height of slope from numerical analysis. The results show that approximately the soil strength increases from two to three times. From numerical analysis, it is possible to estimate the optimum height according to the height of slope. It is anticipated that the use of soil stabilizer will increase the slope stability.

Rock Surface Protection According to Decrease of Blasting Vibration (진동저감 대책을 통한 절취면 보호)

  • Hong, Seong-Min;Song, Ha-Lim;Kang, Choo-Won;Chang, Ho-Min
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.21-28
    • /
    • 2012
  • Blasting methods are frequently used in case of forming slope artificially like slope cutting and open-cut method in the downtown area because of many economical and effective advantages. It is important that blasting work is carried out maintaining original strength of rock and not to damage rock face. And it is also considered that blasting method to decrease ground vibration is essential to the point of blast damages due to the ground vibration. In this study, to form a smooth plane of rock slope face, many trial blasts were carried out in this way that explosives were installed in detonating cord by equal interval in different charging method and stemming method. Using 4 blasting patterns in total 60 blast holes and 20 times of blasts were carried out. At the same time ground vibration measurements were carried out 15~102m away from the blast source, and total number of 310 data were obtained. Measured data for ground vibration velocity were analyzed so as to study blasting method to protect slope plane while decreasing blast vibration in an effective way.

A Case Study on The Stability and Reinforcement Method at a Rock Slope (암반사면의 안정성검토 및 보강방안에 관한 사례연구)

  • Chun, Byung-Sik;Lee, Seung-Eun;Kong, Jin-Young;Lim, Joo-Heon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1369-1375
    • /
    • 2006
  • This study analyzes stability and the reason of slope failure about cut slope on stony mountain in Acheondong, Guri and suggests the reasonal reinforce method. Based on the results of the subsurface exploration, laboratory tests, and the numerical analysis of finite element method, the potentials of plane and wedge failure are highly estimated. The safety factor was 1.2 under dry and 1.06 wet condition. The most proper reinforce method to raise the safety factor more than 1.5 was the way to control displacement by using step retaining wall, earth anchor, wire mesh, and rock anchor.

  • PDF

Changes in Acceleration at the Upper Thigh and Ankle with Variations in Gait Speed and Walkway Slope (보행 속도와 보행로 경사에 따른 대퇴상부와 발목상부에서의 가속도의 변화)

  • Kwon, Yu-Ri;Kim, Ji-Won;Kang, Dong-Won;Tack, Gye-Rae;Eom, Gwang-Moon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.191-196
    • /
    • 2010
  • The purpose of this study was to investigate the effect of gait speed and walkway slope on the body acceleration, for the future validation of using an accelerometer in the estimation of energy consumption. Ten young healthy subjects with accelerometers on the upper thigh and ankle walked on a treadmill at 9 conditions(three speeds ${\times}$ three slopes) for 5 minutes. Acceleration signals of four directions, i.e. anterior-posterior(AP), medio-lateral(ML), superior-inferior(SI) and vector sum(VS) directions, of each sensor were measured, and root means squared(RMS) values of them were used as analysis variables. As statistical analysis, repeated measure two-way ANOVA was performed for RMS accelerations at each attachment sites, with slope and velocity as independent factors. At both the upper thigh and ankle, RMS acceleration of all directions were affected by gait velocities(p<.001) showing greater accelerations for higher velocities. Contrary to expectations, no slope effect existed in RMS accelerations at hip. Moreover, RMS acceleraion at ankle decreased with slope in SI and VS directions(p<.01). These results suggests that RMS acceleration cannot reflect the change in physical activity due to the change in walkway slope.

A Risk Evaluation Method of Slope Failure Due to Rainfall using a Digital Terrain Model (수치지형모델을 이용한 강우시 사면 붕괴 위험도 평가에 관한 제안)

  • Chae, JongGil;Jung, MinSu;Torii, Nobuyuki;Okimura, Takashi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.219-229
    • /
    • 2010
  • Slope failure in South Korea generally occurs by the localized heavy rain in a rainy season and typhoon, and it annually causes huge losses of both life and property because nearly 70% of territory in South Korea is covered with mountains. It is required to measure the risk of slope failure quantitatively before proper prevention methods are provided. However, there is no way to estimate the risk based on realtime rainfall, geological characteristics, and geotechnical engineering properties. This study presents the development of digital terrion model to predict slope stability using infinite slope stability theory combined with temporal groundwater change. Case studies were performed to investigate factors to affect slope stability in Japan.

Derivation of Extended Mild-Slope Equation Using Euler-Lagrange Equation (Euler-Lagrange 식을 사용한 확장형 완경사방정식 유도)

  • Lee, Changhoon;Kim, Kyu-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.493-496
    • /
    • 2009
  • In this study, we derive the extended mild-slope equation in terms of the velocity potential using the Euler-Lagrange equation. First, we follow Kim and Bai (2004) who derive the complementary mild-slope equation in terms of the stream function using the Euler-Lagrange equation and we compare their equation to the existing extended mild-slope equations of the velocity potential. Second, we derive the extended mild-slope equation in terms of the velocity potential using the Euler-Lagrange equation. In the developed equation, the higher-order bottom variation terms are newly developed and found to be the same as those of Massel (1993) and Chamberlain and Porter (1995). The present study makes wide the area of coastal engineering by developing the extended mild-slope equation with a way which has never been used before.

Prediction of Compaction, Strength Characteristics for Reservoir Soil Using Portable Static Cone Penetration Test (휴대용 정적 콘 관입시험을 통한 저수지 제방 토양의 다짐, 강도 특성 및 사면 안정성 예측)

  • Jeon, Jihun;Son, Younghwan;Kim, Taejin;Jo, Sangbeom;Jung, Seungjoo;Heo, Jun;Bong, Taeho;Kim, Donggeun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.1-11
    • /
    • 2023
  • Due to climate change and aging of reservoirs, damage to embankment slopes is increasing. However, the safety diagnosis of the reservoir slope is mainly conducted by visual observation, and the time and economic cost are formidable to apply soil mechanical tests and slope stability analysis. Accordingly, this study presented a predicting method for the compaction and strength characteristics of the reservoir embankment soil using a portable static cone penetration test. The predicted items consisted of dry density, cohesion, and internal friction angle, which are the main factors of slope stability analysis. Portable static cone penetration tests were performed at 19 reservoir sites, and prediction equations were constructed from the correlation between penetration resistance data and test results of soil samples. The predicted dry density and strength parameters showed a correlation with test results between R2 0.40 and 0.93, and it was found to replace the test results well when used as input data for slope stability analysis (R2 0.8134 or more, RMSE 0.0320 or less). In addition, the prediction equations for the minimum safety factor of the slope were presented using the penetration resistance and gradient. As a result of comparing the predicted safety factor with the analysis results, R2 0.5125, RMSE 0.0382 in coarse-grained soil, R2 0.4182 and RMSE 0.0628 in fine-grained soil. The results of this study can be used as a way to improve the existing slope safety diagnosis method, and are expected to be used to predict the characteristics of various soils and inspect slopes.

Comparative Study of Square-Inventory Method with Scanline Survey in Slope Stability Analysis (사면 안정 분석을 위한 정면적법과 선조사법의 비교연구)

  • Cheong, Sang-Won;Choi, Byoung-Ryol
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.119-129
    • /
    • 2009
  • In relation to slope stability analysis, geologic characteristics and engineering properties of the discontinuities in three slopes selected are compared and analyzed by both square-inventory method and scanline survey. The aim of the study is in evaluating which method is applied better in slope stability analysis by comparing results of the two methods with those of direct observation on outcrop of slope failures generated. In each slope, results of comparative analysis among geologic and engineering properties are analyzed similarly one another. However, results of orientation analysis in slope 2 are different each other, which indicates orientation of joints in slope 2 depends on persistency and frequency of each joint and also indicates appearance of new joint set with different orientation. Probability density distribution and spacing in slope 3 are high in comparison to those in slope 2 and 3. The reasons are that distribution of psammitic rocks and development of minor folds in slope 3 unlike slope 2 and 3 are closely associated with development of joints. The research data indicate that the square-inventory method predicts more precise failure aspects and is more effective way than scanline survey in analyzing slope stability of the study area.

The Retaining Wall Revegetation Technology Using Planting Blocks(I) - A Case study on the Eco-Stone structure - (식재용 블록을 이용한 옹벽 녹화 기법에 관한 연구(I) - Eco-Stone의 시공 사례를 중심으로 -)

  • Han, Sung-Sik;Chung, Kyung-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.1
    • /
    • pp.94-102
    • /
    • 1999
  • The retaining wall is a structure which was made for changing land form in many construction. The first role of the retaining wall is to maintain the slope stability. But recently, the amount of retaining wall have been increasing because of the expansion of construction works and the amenity of urban environment have been decreasing because of environmental destruction and the scenic heterogeneity. So we should consider the slope stability and ecological stability at the same time. The purpose of this study is to develop the retaining wall revegetation technology using the Eco-Stone, the structure of co-satisfying which included the slope stability and the revegetation effect. Eco-Stone is a structure which has high stability for earth pressure, settlement and drainage. And cost and term of construction works also have been decreased. Eco-Stone structure is one of factors composing the ecological network which is harmonize with surrounding environment. In this way, it is expected that the ecological habitats of various species would be restored.

  • PDF

Comparative Study Between Finite Element Method and Limit Equilibrium Method on Slope Stability Analysis (사면안정해석에 있어서의 유한요소법과 한계평형법의 비교연구)

  • 이동엽;유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.65-74
    • /
    • 2003
  • This paper presents the results of a comparative study between FEM and LEM on slope stability analysis. For validation, factors of safety were compared between FEM and LEM. The results from the two methods were in good agreement. This suggests that the FEM with the shear strength reduction method can be effectively used on slope stability analyses. A series of analyses were then performed using the FEM for various constitutive laws, slope angles, flow rules, and the finite element discretizations. Among the findings, the finite element method in conjunction with the shear strength reduction method can provide reasonable results in terms of safety. Also revealed is that the results of FEM can be significantly affected by the way in which the type of constitutive law and flow nile we selected.