• Title/Summary/Keyword: slope terrain

Search Result 268, Processing Time 0.028 seconds

Comparison of Accuracy and Characteristics of Digital Elevation Model by MMS and UAV (MMS와 UAV에 의한 수치표고모델의 정확도 및 특성 비교)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.13-18
    • /
    • 2019
  • The DEM(Digital Elevation Model) is a three-dimensional spatial information that stores the height of the terrain as a numerical value. This means the elevation of the terrain not including the vegetation and the artifacts. The DEM is used in various fields, such as 3D visualization of the terrain, slope, and incense analysis, and calculation of the quantity of construction work. Recently, many studies related to the construction of 3D geospatial information have been conducted, but research related to DEM generation is insufficient. Therefore, in this study, a DEM was constructed using a MMS (Mobile Mapping System), UAV image, and UAV LiDAR (Light Detection And Ranging), and the accuracy evaluation of each result was performed. As a result, the accuracy of the DEM generated by MMS and UAV LiDAR was within ± 4.1cm, and the accuracy of the DEM using the UAV image was ± 8.5cm. The characteristics of MMS, UAV image, and UAV LiDAR are presented through a comparison of data processing and results. The DEM construction using MMS and UAV can be applied to various fields, such as an analysis and visualization of the terrain, collection of basic data for construction work, and service using spatial information. Moreover, the efficiency of the related work can be improved greatly.

A Study on the Selection of Optimum Location Using GIS Technique: The Case of Optimum Defense Area between Seoul and Dongducheon (GIS 기법을 이용한 최적입지 선정 연구 - 서울-동두천간의 최적방어지역 선정 -)

  • Kim, Doo-Il;Lee, Hyung-Ho;Han, Uk
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.2
    • /
    • pp.137-147
    • /
    • 1993
  • Terrain is on of the most important factors in the selection of defense areas. The objective of the study is selection optimum defense area between Seoul and Dongducheon using GIS technique. The contents of the study are: (1) to select the defense area by pure terrain factors, (2) to select the defense area with focusing on the avenues of approach, and (3) to compare the above two kinds of area. The study area is located in the northeastern part of Seoul metropolitan area. It is part of Choogaryung Rift Valley which is running from Seoul to Wonsan. Six factors are considered for the selection: tactical distance, direction, elevation, slope, aspect and the distance from main roads. The defense score of each area is calculated by the multiplication of scores of each factors. The optimum defense area I consists of high-mountain areas such as Mt. Dobong, Mt. Wan-gbang, etc. The optimum defense area II consists of high-mountain areas along the three main roads selected. An east-west line of optimum defense area from Kuksabong in the east to Mt. Bulkuk in the west through Chookseok pass is identified from the spatial pattern of the area II. The line is also a dividing line between the northern and the southern watersheds.

  • PDF

Relationship between Solar Radiation in Complex Terrains and Shaded Relief Images (복잡지형에서의 일사량과 휘도 간의 관계 구명)

  • Yun, Eun-Jeong;Kim, Dae-Jun;Kim, Jin-Hee;Kang, Dae-Gyoon;Kim, Soo-Ock;Kim, Yongseok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.283-294
    • /
    • 2021
  • Solar radiation is an important meteorological factor in the agricultural sector. The ground exposed to sunlight is highly influenced by the surrounding terrains especially in South Korea where the topology is complex. The solar radiation on an inclined surface is estimated using a solar irradiance correction factor for the slope of the terrain along with the solar radiation on a horizontal surface. However, such an estimation method assumes that there is no barrier in surroundings, which blocks sunlight from the sky. This would result in errors in estimation of solar radiation because the effect of shading caused by the surrounding terrain has not been taken into account sufficiently. In this study, the shading effect was simulated to obtain the brightness value (BV), which was used as a correction factor. The shaded relief images, which were generated using a 30m-resolution digital elevation model (DEM), were used to derive the BVs. These images were also prepared using the position of the sun and the relief of the terrain as inputs. The gridded data where the variation of direct solar radiation was quantified as brightness were obtained. The value of cells in the gridded data ranged from 0 (the darkest value) to 255 (the brightest value). The BV analysis was performed using meteorological observation data at 22 stations installed in study area. The observed insolation was compared with the BV of each point under clear and cloudless condition. It was found that brightness values were significantly correlated with the solar radiation, which confirmed that shading due to terrain could explain the variation in direct solar radiation. Further studies are needed to accurately estimate detailed solar radiation using shaded relief images and brightness values.

Application of a Physically Based Model to Shallow landsliding (천층(淺層) 산사태(山沙汰) 발생에서의 물리 모델의 적용)

  • Kim, Je-Su;Kim, Nam-Choon;Lee, Heon-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.1
    • /
    • pp.62-69
    • /
    • 2000
  • Topography influences shallow landslide initiation through both concentration of subsurface flow and the gradient on slope stability. A model for the topographic influence on shallow landslide initiation developed by Mongomerry et al (1994) is applied to 24 places with similar terrain and subsurface flow. The criterion of landslide prone areas developed by Korea Forestry Administration (1998) is likely to misinterpreted under the condition of heavy rainfall. Soil saturation can be predicted by this model. This relative soil saturation can be used to analyze the stability of each topographic point in the case of cohesionless soils with spatially constant thickness and saturated conductivity. The three different stages of steady state rainfall predicting to cause instability in each topographic points provide a good measure of shallow landsliding possibility.

  • PDF

A Speed-up method of document image binarization using water flow model (Water flow model을 이용한 문서영상 이진화의 속도 개선)

  • 오현화;이재용;김두식;장승익;임길택;진성일
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.393-396
    • /
    • 2003
  • This paper proposes a method to speed up the document image binarization using a water flow model. The proposed method extracts the region of interest (ROI) around characters from a document image and restricts pouring water onto a 3-dimensional terrain surface of an image only within the ROI. The amount of water to be filled into a local valley is determined automatically depending on its depth and slope. Then, the proposed method accumulates weighted water not only on the locally lowest position but also on its neighbors. Finally, the depth of each pond is adaptively thresholded for robust character segmentation. Experimental results on real document images shows that the proposed method has attained good binarization performance as well as remarkably reduced processing time compared with that of the existing method based on a water flow model.

  • PDF

Temperature Variation by Terrain Using Multitemporal TM Band 6 and DEM(With Seoul City Area) (다시기 TM 밴드 6와 DEM을 이용한 지형별 온도변화(서울시 영역을 대상으로))

  • 박민호
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.203-210
    • /
    • 2004
  • The average temperatures by the land cover class, by the elevation extent, by the slope and by the aspect have been calculated using multitemporal Landsat TM band 6 and DEM. For this, the TM band 6 data from October 21, 1985, June 2, 1992, September 1, 1996, May 7, 2000 and the 28.5m x 28.5m grid elevation data of Seoul have been used. From the varying curve of the average land surface temperature by the elevation extent, the presence of the atmospheric inversion phenomenon and the scope of the inversion layer can be inferred. Especially, the average land surface temperature by the aspect can be effective for deciding a road line. For these reasons, it is expected that temperature estimation using remote sensing data shall be effective for the survey of heat damage, environmental temperature monitoring, and urban and environmental Planning usage.

  • PDF

A Case Study for Construction Hazard Zonation Maps and its Application (석회암 지역 재해 등급도 작성 및 응용에 관한 사례 연구)

  • 정의진;윤운상;김중휘;마상준;김정환;이근병
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.165-172
    • /
    • 2002
  • We presents an hazard zonation mapping technique in karst terrain and its assessment. From the detailed engineering geological mapping. Controlling factors of sink hole and limestone cave formation were discussed and 4 main hazard factors affecting hazard potential are identified as follows: prerequisite hazard factor(distributions of pre-existing sink holes and cavities), geomorphological hazard factors(slope gradient, vegetation, and drainage pattern etc.) geological hazard factors(lithology, fracture patterns and geological structures etc.) and hydraulic conditions(hydraulic head, annual fluctuation of ground water table and composition of g/w water). From the construction of hazard zonation map along the Jecheon-Maepo area, and vertical cross-sectional hazard zonations specific tunnel site we suggest hazard zonation rating systems.

  • PDF

Topographic Information Extraction from Kompsat Satellite Stereo Data Using SGM

  • Jang, Yeong Jae;Lee, Jae Wang;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.315-322
    • /
    • 2019
  • DSM (Digital Surface Model) is a digital representation of ground surface topography or terrain that is widely used for hydrology, slope analysis, and urban planning. Aerial photogrammetry and LiDAR (Light Detection And Ranging) are main technology for urban DSM generation but high-resolution satellite imagery is the only ingredient for remote inaccessible areas. Traditional automated DSM generation method is based on correlation-based methods but recent study shows that a modern pixelwise image matching method, SGM (Semi-Global Matching) can be an alternative. Therefore this study investigated the application of SGM for Kompsat satellite data of KARI (Korea Aerospace Research Institute). Firstly, the sensor modeling was carried out for precise ground-to-image computation, followed by the epipolar image resampling for efficient stereo processing. Secondly, SGM was applied using different parameterizations. The generated DSM was evaluated with a reference DSM generated by the first pulse returns of the LIDAR reference dataset.

Analysis of the Geomorphological Environments of High-Density Residential Zone in Bronze Age around Asan City, Central Korea - A Case Study of Yongdoocheon and Onyangcheon Basin - (충남 아산의 청동기 시대 주거지 밀집 구역의 지형환경 분석 - 용두천과 온양천 유역을 사례로 -)

  • Park, Ji-Hoon;Park, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.110-125
    • /
    • 2011
  • A number of the Bronze Age dwelling sites have been found and excavated in the Yoodoocheon, Onyangcheon and Baekseokdong basins. Two basins are located near Asan and Onyan in the Chungnam Province of South Korea. Baekseokdong is located in Cheonan, Chungnam. 207 dwelling sites are concentrated around the area of $1.3km^2$ in the Baekseokdong. 177 dwelling sites are sparse and distributed over the area of $1.3km^2$ in the Yongdoocheon and Onyangcheon basins. Most of the Bronze Age dwelling sites in those areas located on the hill. The hills have similar geomorphological environments except for slight differences in geological faces. This study analyzes geomorphological environments of the high-density residential zone of the Bronze Age in the Yoodoocheon and the Onyangcheon basins, and then compares them with the results in Baekseokdong. Study results show that high-density residential zone consists mainly of specific micro-landforms such as the Crest slope, the Crest flat and the Upper side slope, and southeast-facing aspect. A lot of Gentle slope lands were distributed in terms of terrain slope but it is far from specific geomorphological environments. This is not weighted in specific value. Our results show that the geomorphological characteristic derived from this study is major considerations to develop dwelling sites in the Bronze Age. This can be useful to discover the possible dwelling sites over other Chungnam hill regions.

Analysis on the Spatial Characteristics Caused by the Cropland Increase Using Multitemporal Landsat Images in Lower Reach of Duman River, Northeast Korea (다시기 위성영상을 이용한 두만강 하류지역의 농경지 개간의 공간적 특성분석)

  • Lee, Min-Boo;Han, Uk;Kim, Nam-Shin;Han, Ju-Youn;Shin, Keun-Ha;Kang, Chul-Sung
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.4
    • /
    • pp.630-639
    • /
    • 2003
  • This study aims to analysis the distribution and change of cropland and forest, the Onseong, Saebyeol, and Eundeok counties on the lower reach of Duman(Tumen) river, northeast Korea, using 1992 year Landsat TM data, 2000 year Landsat ETM data, and digital terrain elevation data(DTED). Land cover and land use of the study areas are classified into cropland, forest, village, and water body, using the supervised classification method including 1:50,000 DTED analysis, image band composition, and principal component analysis(PCA). Results of quantitative analysis present that each growth rate of cropland of Onseong and Eundeok are 22.8% and 14.7% corresponding to decreasing rates of forest, 8% and 13.6% during 8 years from 1992 to 2000. In Onseong, Saebyeol, and Eundeok, each values of mean elevations and slope gradients increased to 192m, 95m, and 91m from 157m, 85m, and 78m, and to 6.6$^{\circ}$, 3.0$^{\circ}$, and 4.4$^{\circ}$ from 5.2$^{\circ}$, 2.5$^{\circ}$, and 3.0$^{\circ}$. Especially, in case of newly developed cropland, the values of mean elevation and mean gradient have 225m, 122m, and 127m, and 9.4$^{\circ}$, 5.1$^{\circ}$, and 8.0$^{\circ}$, in above three regions. These new croplands were developing along to deeper valleys and toward lower hill and mountain slope up to knickpoint zone of gradient change. Deforested lands for cropland have formed irregular pattern of patch-type, and become sources for the sheet erosion, rilling and gulleying in mountain slope and sedimentation in local river channel. Though there were no field checking, analysis using landsat images and GIS mapping can help understand actual environmental problems relating to cropland development of mountain slope in North Korea.