• Title/Summary/Keyword: slope terrain

Search Result 268, Processing Time 0.025 seconds

Analysis of Topographic Environment for Urban Forest Area in Taejon City Using Landsat - 5 TM and Digital Terrain Elevation Data (Landsat-5 TM과 수치지형데이타를 이용한 도시내 산림의 지형환경 분석 - 대전시를 중심으로 -)

  • 장관순
    • Korean Journal of Environment and Ecology
    • /
    • v.10 no.1
    • /
    • pp.58-65
    • /
    • 1996
  • The environment in urban are becoming worse and forest is being recognized the major part of city by the increase of population and facilities. This study was carried out to analyze topographic environment as the basis for reasonable management and utility of forest situated in Taejon city and its vicinities using Sandst-5 TM and digital terrain elevation data(DTED). Forest area was extracted by Landsat-5 TM data. Distribution of elevation, slope and aspect was derived from digital terrain elevation data. The research area to analyze ropographic environment for urban forest were Bomumsan, Bongsan, Kabhasan, Sikchangsan, and Kyechoksan. Forest, the largest area in Taejon covers 55.1% of totaf area. This is more 5 times than urban area. 70.8% of forest area in Taejon city is located in elevation of lower than 200m and 4.8% of that is located in elevation of upper than 400m. Distribution of elevation is 45.7% of total area for 100m to 200m in Kyechoksan and is 92.4% of total area for lower than 300m in Bomumsan. Elevation of upper than 300m is 20.4% of total area in Kabhasan and is 46.6% of total area in Sikchangsan. The slope of more 20 digree is over 50% of total area in every area except for Bonsan and 35.2% of total area in Sikchangsan and Kahasan than in Bomumsan and Kyechoksan.

  • PDF

Analysis of Lower-Limb Motion during Walking on Various Types of Terrain in Daily Life

  • Kim, Myeongkyu;Lee, Donghun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.319-341
    • /
    • 2016
  • Objective:This research analyzed the lower-limb motion in kinetic and kinematic way while walking on various terrains to develop Foot-Ground Contact Detection (FGCD) algorithm using the Inertial Measurement Unit (IMU). Background: To estimate the location of human in GPS-denied environments, it is well known that the lower-limb kinematics based on IMU sensors, and pressure insoles are very useful. IMU is mainly used to solve the lower-limb kinematics, and pressure insole are mainly used to detect the foot-ground contacts in stance phase. However, the use of multiple sensors are not desirable in most cases. Therefore, only IMU based FGCD can be an efficient method. Method: Orientation and acceleration of lower-limb of 10 participants were measured using IMU while walking on flat ground, ascending and descending slope and stairs. And the inertial information showing significant changes at the Heel strike (HS), Full contact (FC), Heel off (HO) and Toe off (TO) was analyzed. Results: The results confirm that pitch angle, rate of pitch angle of foot and shank, and acceleration in x, z directions of the foot are useful in detecting the four different contacts in five different walking terrain. Conclusion: IMU based FGCD Algorithm considering all walking terrain possible in daily life was successfully developed based on all IMU output signals showing significant changes at the four steps of stance phase. Application: The information of the contact between foot and ground can be used for solving lower-limb kinematics to estimating an individual's location and walking speed.

Study of Shear Fracture System of Janghung Area by Landslide Location Analysis (산사태 발생 자료 분석에 의한 장흥지역의 전단 단열계 연구)

  • 이사로;최위찬;민경덕
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.547-556
    • /
    • 2000
  • The purpose of this study is to analyze shear fracture system using landslide location occurred 1998 at Janghung area. For the geological implication, foliation was surveyed and analyzed, and location of landslide, geological structure and topography were constructed into spatial database using GIS. With the constructed spatial database, shear fracture system was assessed by the relation analysis between strike and dip of the foliation and aspect and slope of the topography. We compared strike and dip of foliation and aspect and slope of topography and recognized the typical fracture pattern, strike and dip of joint, that coincided with shear fracture system. The result tells us that foliation of gneiss has geometrical relation to joint or fault that leading landslide. GIS was used to analyze vast data efficiently and the result can be used to assess the landslide susceptibility as important factor.

  • PDF

The Current States of Debris Flow Hazards and Suggestion of Damage Mitigation Methods in Korea (국내 토석류 재해 현황 및 피해저감 방안)

  • Chae, Byung-Gon;Cho, Yong-Chan;Song, Young-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.302-311
    • /
    • 2008
  • There have been repetitive landslides and debris flows on natural terrain induced by intensive rainfalls which have never been experienced during the last a few decades in Korea. Frequencies and magnitudes of landslides and debris flows are steeply increased after 2000 resulting in huge damages of human beings and facilities. According to a statistical data from NEMA, the human deaths induced by landslides and slope hazards occupies 22.3% of the total human deaths by all the natural hazards in Korea during the last 30 years. Among the human deaths by landslides and slope hazards, 85% of the damages were caused by landslides and debris flows on natural hazards. Therefore, this paper summarizes important events of landslides and debris flows, their characteristics, and suggests some methods of damage mitigation.

  • PDF

Schentific analysis and interpretation of visual structure of feng-shui : Case study of Hahoi and Yangdong villages (풍수지리의 시각적 구조의 과학적 분석파 해석 -하회, 양동 마을의 사례 연구-)

  • 현중영;박찬용
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.1
    • /
    • pp.124-134
    • /
    • 1997
  • The primary purpose of this research is to scientifically investigate visual structure of Korean feng-shui at the level of village settlement. This study deals with Hahoi and Yangdong villages of which feng-shui is regarded highly fit to traditional feng-shui principles. Methodologically this research utilizes analytical tools of geographical information systems and statistical analysis methods, Visual structures of the villages'feng-shui are analyzed in terms of elevation, orientation, gradient of slope and relative dominance of visibility of major hills. A mathematical model is suggested to quantify facets of the villages'lung-shui with reference to slope trends. The quantitative analysis results indicate that both villages have good feng-shui. Hahoi village has an excellent feng-shui attributable to a near perfect harmony between water and terrain while Yangdong village has an effective feng-shui facet for conserving energy in terms of microclimate. Principles of fang-shui have potentials to be developed as a holistic planning and design language. Further in-depth research on feng-shui needed to accomplish this goal.

  • PDF

An Analysis of Multi-path Propagation Characteristics Using DTM : Considering Slope of the Ground Surface (DTM을 이용한 다중경로 전파특성 분석 : 지면의 경사를 고려한 해석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo;Kim, Min-Nyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.71-78
    • /
    • 2007
  • We suggest a multi-path propagation analysis method using DTM(Digital Terrain Map). Generally, the total signal strength at a target is calculated by adding the field propagated in free space and the field reflected from the ground surface. In this paper, we also consider the vertical reflections associated with the vertical surfaces such as precipitous cliffs and electricity pylons in the mountain area. In addition, we primarily take account the main slope of the ground surface to improve the accuracy of the total field density at the target.

Evaluation of Slope Stability of Taebaeksan National Park using Detailed Soil Map (정밀토양도를 이용한 태백산국립공원의 사면안정성 평가)

  • Kim, Young-Hwan;Jun, Byong-Hee;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2019
  • More than 64% of Korea's land is occupied by mountain regions, which have terrain characteristics that make it vulnerable to mountain disasters. The trails of Taebaeksan Mountain National Park-the region considered in this study-are located in the vicinity of steep slopes, and therefore, the region is vulnerable to landslides and debris flow during heavy storms. In this study, a slope stability model, which is a deterministic analysis method, was used to examine the potential occurrence of landslides. According to the soil classification of the detailed soil map, the specific weight of soil, effective cohesion, internal friction angle of soil, effective soil depth, and ground slope were used as the parameters of the model, and slope stability was evaluated based on the DEM of a 1 m grid. The results of the slope stability analysis showed that the more hazardous the area was, the closer the ratio of groundwater/effective soil depth is to 1.0. Further, many of the private houses and commercial facilities in the lower part of the national park were shown to be exposed to danger.

Landslide Detection using Wireless Sensor Networks (사면방재를 위한 무선센서 네트워크 기술연구)

  • Kim, Hyung-Woo;Lee, Bum-Gyo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.369-372
    • /
    • 2008
  • Recently, landslides have frequently occurred on natural slopes during periods of intense rainfall. With a rapidly increasing population on or near steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is introduced. The system is focused to debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of sensor nodes, gateway, and server system. Sensor nodes comprising a sensing part and a communication part are developed to detect ground movement. Sensing part is designed to measure inclination angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15.1) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of experimental studies was performed at a small-scale earth slope equipped with an artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope starts to move. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs.

  • PDF

Extraction and Analysis of Topographic Variables from DTM: A Case Study in Jeju Island (DTM으로부터 지형변수의 추출 및 분석: 제주도 사례연구)

  • Kim Seok Choong;Cho Sung Hyen;Kim Hyoung Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.56-61
    • /
    • 2004
  • The topographic variables, which influence the precipitation phenomena, are classified by elevation (ELEV), slope (SLOPE), distance to sea (SEA), obstruction (OBST), barrier (BAR), roughness (SHIELD), extracted and analysed according to resolutions. This study is performed through 100 m, 200 m, 400 m, 600 m, 800 m and 1,000 m based on 50 m DTM using TOVA (Topographic Variables Extraction Program). The result of a case study on Jeju weather station says that the variance according to resolution is generally less than that according to cardinal direction, but particularly SHIELD values and some cases for 600m resolution have a significant results.

Analysis of Topographical Factors in Woomyun Mountain Debris Flow Using GIS (GIS를 이용한 우면산 토석류 지형인자 분석)

  • Lee, Hanna;Kim, Gihong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.809-815
    • /
    • 2020
  • A number of investigations and studies have been conducted in various fields regarding the sediment disasters of Mt. Woomyeon that occurred in July 2011. We collected and compared the topographic information of the general points where debris flows did not occur and the collapse points where the debris flow occurred in order to find out the characteristics of the collapse points in Woomyeon mountain. The collected topographic information is altitude, curvature, slope, aspect and TPI(topographic position index). As a result of comparison, there were relatively many collapse points at an altitude of 210m to 250m, and at a slope of 30° to 40°. In addition, the risk of collapse was low in a cell where the curvature was close to 0, and the risk was higher in concave terrain than in convex terrain. In the case of TPI, there was no statistical difference between the general points and the collapse points when the analysis radius was larger than 200m, and there was a correlation with the curvature when the analysis radius was smaller than 50m. In the case of debris flows that are affected by artificial structures or facilities, there is a possibility of disturbing the topographic analysis results. Therefore, if a research on debris flow is conducted on a mountain area that is heavily exposed to human activities, such as Woomyeon mountain, diversified factors must be considered to account for this impact.