• Title/Summary/Keyword: slope hazards mitigation method

Search Result 6, Processing Time 0.02 seconds

Field survey of slope hazards mitigation method in Muju-Jangsu area (무주-장수지역에 적용된 급경사지재해 대응공법 현장조사)

  • Song, Young-Suk;Cho, Yong-Chan;Chae, Byung-Gon;Kim, Kyung-Su;Kim, Man-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1053-1059
    • /
    • 2009
  • In this study, slope hazards mitigation methods for a natural terrain are systematically classified to survey the mitigation methods and develop a data base system. Also, field survey sheets which can be recorded the features of mitigation methods installed in the natural slope are developed. The slope hazards mitigation methods in the natural slope are classified as hillside part method and valley part method. The slope part sheet and the valley part sheet are also drawn up for field survey. As the result of the filed survey of mitigation methods about 50 points in Muju and Jangsu area, grass painting and slope covering methods are dominant in case of slopes part. In case of valley part, slit dam, concrete check dam and slope foot barrier are applied simultaneously.

  • PDF

Development of Rock Slope Survey and Analysis System using GIS

  • Park, H. J.;Chang, B. S.;Lee, S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.144-146
    • /
    • 2003
  • Techniques for rock slope management and assessment must be developed for the prevention and mitigation of rock fall hazards. To enable this, the rock discontinuity such as fault and joint data must be surveyed, analysed and managed. For this, the discontinuities were detected by automatic and semi-automatic method using DEM and ortho-rectified image of rock slope and the rock slope analysis and management system was developed using GIS. Using the system, slope locations and discontinuities data were constructed to spatial database. The system is consist of ‘Data Management’, ‘Rock Slope DB’, ‘Basic Information’, ‘Image Processing’, ‘Image Analys ing’, ‘Edit’, ‘View’, ‘Theme’, ‘Graphic’, ‘Window’ and ‘Help’. The system was developed using avenue of ArcView 3.2.

  • PDF

Analysis of Patents regarding Stabilization Technology for Steep Slope Hazards (급경사지재해 안정화기술에 대한 특허분석)

  • Song, Young-Suk;Kim, Jae-Gon
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.257-269
    • /
    • 2010
  • We analyzed patent trends regarding stabilization technology for steep slope hazards, focusing on patents applied for and registered in Korea, the USA, Japan, and Europe. The technology was classified into four groups at the second classification step: prediction techniques, instrumentation techniques, countermeasure/reinforcement/mitigation techniques, and laboratory tests. A total of 2,134 patents were selected for the final effective analysis. As a result of portfolio analysis using the correlation between the number of patents and the applicant for each patent, the Korean and USA situations were classified as belonging to the developing period, and the Japanese and European situations were classified as belonging to the ebbing period. In particular, patent activity in Korea has been enlivened by government-led research. As a result of technology analysis at the second classification step, prediction techniques arising from Japan are evaluated as a competitive power technique, and laboratory tests arising from the USA are evaluated as a competitive power technique. However, prediction techniques and laboratory tests arising from Korea are evaluated as a blank technique. According to the prediction results regarding future research and developments, a new finite element analysis method and a numerical model should be established as part of prediction techniques, as well as sensors, and hazard prediction should be developed by integrating information and equipment using IT technology as part of instrumentation techniques. In addition, improvements to existing structures for erosion control and the development of new slope-reinforcement methods are required as part of countermeasure/reinforcement/mitigation techniques, and new laboratory apparatus and methods with an optimizing structure should be developed as part of laboratory tests.

Development of the field survey technique on the slope hazards mitigation method and its application (급경사지재해 대응공법의 조사기법 개발 및 적용)

  • Song, Yeong-Seok
    • Magazine of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.90-95
    • /
    • 2011
  • 본 연구에서는 자연사면을 대상으로 적용되는 급경사지 대응공법을 체계적으로 분류하였다. 급경사지재해 대응공법을 합리적으로 조사하기 위하여, 자연사면에 설치된 급경사지 대응공법의 특징을 기록할 수 있는 현장조사 양식을 개발하였다. 자연사면에서 급경사지재해 대응공법은 사면부 적용공법과 계곡부 적용공법으로 분류한다. 따라서 개발된 조사양식도 사면부과 계곡부로 구분하여 작성하도록 하였다. 무주 및 장수지역에 설치된 50개소의 급경사지재해 대응공법에 대한 현장조사결과 사면부의 경우 비탈다듬기와 표면보호를 위한 선떼붙이기, 비탈덮기 등이 주로 보강되어 있다. 계곡부의 경우 대부분 콘크리트 사방댐과 기슭막이가 시공되어 있으며, 슬랫댐과 콘크리트 사방댐 및 기슭막이가 복합적으로 적용되고 있음을 알 수 있다.

  • PDF

A study on the landslide detection method using wireless sensor network (WSN) and the establishment of threshold for issuing alarm (무선센서 네트워크를 이용한 산사태 감지방법 및 경로발령 관리 기준치 설정 연구)

  • Kim, Hyung-Woo;Kim, Goo-Soo;Chang, Sung-Bong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.262-267
    • /
    • 2008
  • Recently, landslides frequently occur on natural slope and/or man-made cut slope during periods of intense rainfall. With a rapidly increasing population on or near steep terrain, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide monitoring systems have been developed throughout the world. In this paper, a simple landslide detection system that enables people to escape the endangered area is introduced. The system is focused on the debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of wireless sensor nodes, gateway, and remote server system. Wireless sensor nodes and gateway are deployed by commercially available Microstrain G-Link products. Five wireless sensor nodes and one gateway are installed at the test slope for detecting ground movement. The acceleration and inclination data of test slope can be obtained, which provides a potential to detect landslide. In addition, thresholds to determine whether the test slope is stable or not are suggested by a series of numerical simulations, using geotechnical analysis software package. It is obtained that the alarm should be issued if the x-direction displacement of sensor node is greater than 20mili-meters and the inclination of sensor node is greater than 3 degrees. It is expected that the landslide detection method using wireless senor network can provide early warning where landslides are prone to occur.

  • PDF

New Flood Hazard Mapping using Runoff Mechanism on Gamcheon Watershed (유출메커니즘을 활용한 감천유역에서의 새로운 홍수위험지도 작성)

  • Kim, Tae Hyung;Han, Kun Yeun;Park, Jun Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1011-1021
    • /
    • 2016
  • This study performs the potential flood hazard analysis by applying elevation data, soil data and land use data. The susceptibility maps linked to elevation, soil and land use are combined to develop the new types of flood hazard map such as runoff production map and runoff accumulation map. For the development of the runoff production map, land use, soil thickness, permeability, soil erosion and slope data are used as runoff indices. For the runoff accumulation map, elevation, knick point and lowland analysis data are used. To derive an integrated type of flood potential hazard, a TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) technique, which is widely applied in MCDM (Multi-Criteria Decision Making) process, is adopted. The indices applied to the runoff production and accumulation maps are considered as criteria, and the cells of analysis area are considered as alternatives for TOPSIS technique. The model is applied to Gamcheon watershed to evaluate the flood potential hazards. Validation with large scale data shows the good agreements between historical data and runoff accumulation data. The analysis procedure presented in this study will contribute to make preliminary flood hazard map for the public information and for finding flood mitigation measures in the watershed.