• Title/Summary/Keyword: slope beach

Search Result 68, Processing Time 0.033 seconds

A Numerical Simulation on the Formation of Coastal Cliff (해안단애의 형성에 관한 수치모의)

  • Kim, Nam-Hyeong;Kang, Hyeon-U;Shin, Moon-Seup;Nishi, Ryuichiro
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.71-79
    • /
    • 2002
  • A numerical simulation has been performed on the generation of the coastal cliff which lies as the distinct boundary between the beach and the hinterland. As a result of storm surge, it is known that the steeper the initial beach slope, the larger the generation of the coastal cliff. The rise of water level added the mean water level accelerates the generation of the coastal cliff. In addition, the longshore distribution of the incident wave height is one factor that bring about the generation of the non-uniform coastal cliff in longshore direction. Therefore this study will be able to use for expecting the formation and erosion of coastal cliff in sand beach.

  • PDF

Investigation of bar parameters occurred by cross-shore sediment transport

  • Demirci, Mustafa;Akoz, M. Sami
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.277-286
    • /
    • 2013
  • Cross-shore sediment transport is very important factor in the design of coastal structures, and the beach profile is mainly affected by a number of parameters, such as wave height and period, beach slope, and the material properties of the bed. In this study cross-shore sediment movement was investigated using a physical model and various offshore bar geometric parameters were determined by the resultant erosion profile. The experiments on cross- shore sediment transport carried out in a laboratory wave channel for initial base slopes of 1/8, 1/10 and 1/15. Using the regular waves with different deep-water wave steepness generated by a pedal-type wave generator, the geometrical of sediment transport rate and considerable characteristics of beach profiles under storm conditions and bar parameters affecting on-off shore sediment transport are investigated for the beach materials with the medium diameter of $d_{50}$=0.25, 0.32, 0.45, 0.62 and 0.80 mm. Non-dimensional equations were obtained by using linear and non-linear regression methods through the experimental data and were compared with previously developed equations in the literature. The results have shown that the experimental data fitted well to the proposed equations with respect to the previously developed equations.

Erosion and Recovery Processes in Haeundae Beach by the Invading Typhoon Chaba in 2016 (2016년 태풍 차바 내습 전후의 해운대 해빈의 침식과 회복 과정)

  • Lee, Young Yun;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.37-45
    • /
    • 2019
  • In spite of continued nourishments, Haeundae Beach in Busan has been suffering from erosion, this being caused by the increased wave energy due to global warming and intermittent typhoon reported by previous works. In the meantime, the typhoon Chaba hit Basan in October 2016. In order to investigate the effects of the typhoon in beach erosion and how fast the beach recovered after the typhoon, repeated beach profiling using a VRS-GPS system was carried out, and the grain size analyses for surface sediments sampled on the beach were conducted. Immediately after the typhoon invasion, Haeundae beach was eroded by 1.4 m in average height. The mean high tide lines were retreated back by 12 m, and beach slope became gentler from $3.8^{\circ}$ to $1.7^{\circ}$. The mean grain sizes of surface sediments became coarser from $1.6{\Phi}$ to $1.2{\Phi}$ after two months, and the sorting well sorted. After two months of typhoon landfall, the mean high tide lines have recovered by 85%, and the beach topography almost recovered. This suggests that the impact of typhoons on Haeundae beach erosion is negligible, and the relaxation time is shorter than that of other beaches.

Characteristics of Run-up Height over Sandy Beach with Submerged Breakwaters ; PART II - Effect of Shape of Submerged Breakwaters (잠제 설치 연안의 처오름 높이 특성 ; PART II - 잠제의 제원에 의한 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.429-439
    • /
    • 2008
  • The purpose of this study is to examine the characteristics of run-up height over sandy beach due to the shape of submerged breakwater. For the discussion on it in detail, 3-Dimensional numerical model with Large Eddy Simulation, which is able to simulate directly interaction of Wave Structure Sandy beach (hereafter, LES-WASS-3D; Hur and Lee, 2007) has been used to simulate run-up height over sandy beach as well as wave field around submerged breakwaters. Using the results obtained from numerical simulation, the effects of the shape of submerged breakwaters (crown height, crown width, crown length and submerged breakwater's slope gradient) on run-up height over sandy beach have been discussed related to the wave height distribution and characteristics of up-layer flow around ones.

Seasonal Variations of Iho and Hamdeok Beach Sediments in the Jeju Island, Korea (제주도 이호.함덕 해빈퇴적물의 계절적 변화에 관한 연구)

  • Youn, Jeung-Su;Park, Yong-Seung;Kim, Tae-Joung;Park, Sang-Woon
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.243-252
    • /
    • 2008
  • The Iho and Hamdeok beaches, the major coastal beaches in Jeju Island, have been studied through size analysis and using an experimental extension pole and sediment trap in beach profile, in order to understand their textural characteristics, migration patterns, and seasonal change in beach geometry. The Iho beach is composed of coarse and medium sands, 590 m in total length. The foreshore slope is 12.3$^{\circ}$ in summer and 10.8$^{\circ}$ in winter, which shows more steeper in summer. The Hamdeok beach consisting mostly of shell fragments is 950 m long, $5.7{\sim}7.4^{\circ}$ steep and 97.4${\sim}$114.5 m wide, respectively. The suspended load drift concentrations in the studied beaches showed 4.5 mg/l during the period of summer and 33.2 mg/l in winter, and those of fine-grained sediments are derived mostly from the marine of northeastward direction. The typical beach transformation of the Iho beach is resulting from the construction of jetties in the west side that built up the sand inside the jetties, whereas the erosion is occurring on the east side of beach. The center and berm sides of the sand in the Hamdeok beach drift into the dune side during the period of the stormy winter season.

Estimation of Bathymetry Changes using Hyperspectral Measurements -Focused on Haeundae beach- (초미세분광 측정치를 이용한 해저지형 변화산정 - 해운대를 중심으로 -)

  • Yang, Intae;Jo, Young-Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1335-1342
    • /
    • 2014
  • Shallow water depths were estimated using Compact Airborne Spectrographic Imager (CASI)-1500 and mapped to analyze the bottom bathymetry changes due to the rip currents in Haeundae beach, South Korea for the first time. The depths were estimated empirically using the maximum reflectances from 420nm to 597nm wavelength of CASI and 47 in situ water depth measurements, which were compared with ground-truth bathymetry measurements. The comparisons showed that the RMSE was 1.1m with a correlation coefficient of 0.76. In addition, CASI imagery showed remarkably detailed bottom features, especially those resulting from the rip currents within the beach. Two different channels carved by the rip current were analyzed and characterized with respect to the width and slope compared to surrounding regions. While the west side of the channel showed a wide and gentle slope, the east side of the channel showed a narrow and steep slope. The estimated bathymetry map revealed that the uneven offshore bottom features were related to the transport and accumulation of sediments by the rip current, which reaches hundreds of meters offshore. Accordingly, the accumulated sediments were estimated by adding topography changes compared to the depths of the non-rip current regions. The sediments were accumulated in off channels as much as almost twice the amount of annual sand supplements along the Haeundae beach.

Bragg Reflection of Long Waves Generated by Short Wave Groups on a Sloping Beach (경사지형에서 파군에 의해 생성된 장파의 Bragg 반사)

  • Jung, Jae-Sang;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.413-422
    • /
    • 2003
  • Numerical analysis for the Bragg reflection due to sinusoidally varying seabeds tying on a sloping beach was performed by using a couple of ordinary differential equations derived from the Boussinesq equations. Incident waves were wane groups generated by two short waves with slightly different phases. Effects of the slope of a seabed to the reflection were investigated in detail. It is shown that the reflection of long waves enhanced by increasing the slope of a seabed. This phenomenon caused by increase of wave amplitude due to increase of nonlinearity and shoaling.

Numerical study of the run-up of a solitary wave after propagation over a saw-tooth-shaped submerged breakwater

  • Sun, Jiawen;Ma, Zhe;Wang, Dongxu;Dong, Sheng;Zhou, Ting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.283-296
    • /
    • 2020
  • A numerical model is established to investigate the run-up of a solitary wave after propagating over a triangular saw-tooth-shaped submerged breakwater. A rectangular-shaped submerged breakwater is simulated for comparison. Several factors, including the submerged depth, the lagoon length and the beach slope, are selected as independent variables. The free surface motions and velocity fields of the solitary wave interacting with the submerged breakwater are discussed. The results show that the submerged depth and lagoon length play significant roles in reducing the run-up. The influence of the beach slope is not significant. At the same submerged depth, the triangular saw-tooth-shaped submerged breakwater has only a slightly better effect than the rectangular-shaped submerged breakwater on the run-up reduction. However, a calmer reflected wave profile could be obtained with the rougher surface of the saw-tooth-shaped submerged breakwater. The study conclusions are expected to be useful for the conceptual design of saw-tooth-shaped submerged breakwaters.

Experimental Study on Effect of Stranded Oil on the Penetration of Particulate Matters in Tidal Flat (연안 조간대에 표착된 기름이 입자상 물질의 토양침투에 미치는 영향의 실험적 연구)

  • Cheong, Cheong-Jo;Lee, Young-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1030-1034
    • /
    • 2005
  • The purpose of this study was to clarify the penetration behavior of particulate matters by wave and tidal actions in sandy beach located in enclosed bay and to evaluate the effect of stranded oil on penetration of particulate matters. Experiments were rallied out using a model sandy beach facility. The particulate matters penetrated into saturated sediments by wave action from breaking wave run-up point with a semi-circular forming in low energy beach as enclosed bay. On the other hand, the penetration velocity of the particulate matters was to be faster according to the increase of slope and breaking wave height. The particulate matters by tidal action penetrated into the sediments at an angie of 45 degrees in the direction of porous water flow. The stranded oil completely blocked the penetration of the particulate matters into the sediments. These results indicate that the penetrated oil prevents the penetration of the particulate matters into the sediments and, therefore, results in the reduction in the supply of plankton, bacteria and organic detritus for the benthic organisms in the sandy beach.

Numerical investigation of solitary wave interaction with a row of vertical slotted piles on a sloping beach

  • Jiang, Changbo;Liu, Xiaojian;Yao, Yu;Deng, Bin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.530-541
    • /
    • 2019
  • To improve our current understanding of tsunami-like solitary waves interacting with a row of vertical slotted piles on a sloping beach, a 3D numerical wave tank based on the CFD tool $OpenFOAM^{(R)}$ was developed in this study. The Navier-Stokes equations were employed to solve the two-phase incompressible flow, combining with an improved VOF method to track the free surface and a LES model to resolve the turbulence. The numerical model was firstly validated by our laboratory measurements of wave, flow and dynamic pressure around both a row of piles and a single pile on a slope subjected to solitary waves. Subsequently, a series of numerical experiments were conducted to analyze the breaking wave force in view of varying incident wave heights, offshore water depths, spaces between adjacent piles and beach slopes. Finally, a slamming coefficient was discussed to account for the breaking wave force impacting on the piles.