Acknowledgement
The study was supported by the Natural Science Foundation of China-Shandong Joint Fund Project (U1706226) and the Natural Science Foundation of China (51779236, 51809053, 51709140).
References
- Carevic, D., Loncar, G., Prsic, M., 2013. Wave parameters after smooth submerged breakwater. Coast. Eng. 79, 32-41. https://doi.org/10.1016/j.coastaleng.2013.04.004
- Chan, I., Liu, P.L.F., 2012. On the runup of long waves on a plane beach. J. Geophys. Res.: Oceans 117 (C8).
- Chang, K., Hsu, T., Liu, P.L.F., 2001. Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle: Part I. solitary waves. Coast. Eng. 44 (1), 13-36. https://doi.org/10.1016/S0378-3839(01)00019-9
- Chen, L., Ning, D., Teng, B., Zhao, M., 2017. Numerical and experimental investigation of nonlinear wave-current propagation over a submerged breakwater. J. Eng. Mech. 143 (9), 04017061. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001271
- Christou, M., Swan, C., Gudmestad, O.T., 2008. The interaction of surface water waves with submerged breakwaters. Coast. Eng. 55 (12), 945-958. https://doi.org/10.1016/j.coastaleng.2008.02.014
- Feng, X., Yin, B., Gao, S., Wang, P., Bai, T., Yang, D., 2017. Assessment of tsunami hazard for coastal areas of Shandong Province, China. Appl. Ocean Res. 62, 37-48. https://doi.org/10.1016/j.apor.2016.12.001
- Goseberg, N., Wurpts, A., Schlurmann, T., 2013. Laboratory-scale generation of tsunami and long waves. Coast. Eng. 79, 57-74. https://doi.org/10.1016/j.coastaleng.2013.04.006
- Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
- Hsiao, S., Lin, T., 2010. Tsunami-like solitary waves impinging and overtopping an impermeable seawall: experiment and RANS modeling. Coast. Eng. 57 (1), 1-18. https://doi.org/10.1016/j.coastaleng.2009.08.004
- Irtem, E., Seyfioglu, E., Kabdasli, S., 2011. Experimental investigation on the effects of submerged breakwaters on tsunami run-up height. J. Coast. Res. 64 (s), 516-520.
- Ji, Q., Dong, S., Luo, X., Guedes Soares, C., 2017. Wave transformation over submerged breakwaters by the constrained interpolation profile method. Ocean Eng. 136, 294-303. https://doi.org/10.1016/j.oceaneng.2017.03.037
- Jiang, X., Zou, Q., Zhang, N., 2017. Wave load on submerged quarter-circular and semicircular breakwaters under irregular waves. Coast. Eng. 121, 265-277. https://doi.org/10.1016/j.coastaleng.2016.11.006
- Kasem, T.H.M.A., Sasaki, J., 2010. Multiphase modeling of wave propagation over submerged obstacles using Weno and level set methods. Coast Eng. J. 52 (3), 235-259. https://doi.org/10.1142/S0578563410002166
- Li, M., Zhao, X., Ye, Z., Lin, W., Chen, Y., 2018. Generation of regular and focused waves by using an internal wave maker in a CIP-based model. Ocean Eng. 167, 334-347. https://doi.org/10.1016/j.oceaneng.2018.08.048
- Madsen, P.A., Fuhrman, D.R., Schaffer, H.A., 2008. On the solitary wave paradigm for tsunamis. J. Geophys. Res.: Oceans 113 (C12).
- Menter, F.R., 1994. Two-equation Eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (8), 1598-1605. https://doi.org/10.2514/3.12149
- Qu, K., Ren, X.Y., Kraatz, S., 2017. Numerical investigation of tsunami-like wave hydrodynamic characteristics and its comparison with solitary wave. Appl. Ocean Res. 63, 36-48. https://doi.org/10.1016/j.apor.2017.01.003
- Qu, K., Tang, H.S., Agrawal, A., Cai, Y., Jiang, C.B., 2018. Numerical investigation of hydrodynamic load on bridge deck under joint action of solitary wave and current. Appl. Ocean Res. 75, 100-116. https://doi.org/10.1016/j.apor.2018.02.020
- Rambabu, A.C., Mani, J.S., 2005. Numerical prediction of performance of submerged breakwaters. Ocean Eng. 32 (10), 1235-1246. https://doi.org/10.1016/j.oceaneng.2004.10.023
- Schimmels, S., Sriram, V., Didenkulova, I., 2016. Tsunami generation in a large scale experimental facility. Coast. Eng. 110, 32-41. https://doi.org/10.1016/j.coastaleng.2015.12.005
- Shing, T.K.C., 2014. Experimental Study on the Effect of Submerged Breakwater Configuration on Long Wave Run-Up Reduction. The University of Hawaii, Hawaii.
- Silva, R., Losada, I.J., Losada, M.A., 2000. Reflection and transmission of tsunami waves by coastal structures. Appl. Ocean Res. 22, 215-223. https://doi.org/10.1016/S0141-1187(00)00012-2
- Sriram, V., Didenkulova, I., Sergeeva, A., Schimmels, S., 2016. Tsunami evolution and run-up in a large scale experimental facility. Coast. Eng. 111, 1-12. https://doi.org/10.1016/j.coastaleng.2015.11.006
- Synolakis, C.E., 1987. The runup of solitary waves. J. Fluid Mech. 185, 523-545. https://doi.org/10.1017/S002211208700329X
- Wang, D., Dong, S., Sun, J., 2019a. Numerical modeling of the interactions between waves and a Jarlan-type caisson breakwater using OpenFOAM. Ocean Eng. 188, 106230. https://doi.org/10.1016/j.oceaneng.2019.106230
- Wang, D., Sun, J., Gui, J., et al., 2019b. A numerical piston-type wave-maker toolbox for the open-source library OpenFOAM. J. Hydrodyn. 31, 800. https://doi.org/10.1007/s42241-018-0116-4
- Wang, J., He, G., You, R., Liu, P., 2018b. Numerical study on interaction of a solitary wave with the submerged obstacle. Ocean Eng. 158, 1-14. https://doi.org/10.1016/j.oceaneng.2018.03.064
- Wang, D., Sun, J., Gui, J., Ma, Z., Fang, K., 2018. Numerical simulation of solitary wave transformation over reef profile based on InterDyMFoam. The Ocean Eng. 36 (2), 47-55.
- Williams, I.A., Fuhrman, D.R., 2016. Numerical simulation of tsunami-scale wave boundary layers. Coast. Eng. 110, 17-31. https://doi.org/10.1016/j.coastaleng.2015.12.002
- Wu, Y.T., Hsiao, S.C., Huang, Z.C., Hwang, K.S., 2012. Propagation of solitary waves over a bottom-mounted barrier. Coast. Eng. 62, 31-47. https://doi.org/10.1016/j.coastaleng.2012.01.002
- Yao, Y., Tang, Z., Jiang, C., He, W., Liu, Z., 2018. Boussinesq modeling of solitary wave run-up reduction by emergent vegetation on a sloping beach. J. Hydro-Environ. Res. 19, 78-87. https://doi.org/10.1016/j.jher.2018.03.001
- Young, D.M., Testik, F.Y., 2011. Wave reflection by submerged vertical and semicircular breakwaters. Ocean Eng. 38 (10), 1269-1276. https://doi.org/10.1016/j.oceaneng.2011.05.003
- Zhang, N., Zhang, Q., Zou, G., Jiang, X., 2016. Estimation of the transmission coefficients of wave height and period after smooth submerged breakwater using a non-hydrostatic wave model. Ocean Eng. 122, 202-214. https://doi.org/10.1016/j.oceaneng.2016.06.037
- Zhuang, F., Lee, J., 1996. A viscous rotational model for wave overtopping over marine structure. In: Proceedings of the 25th International Conference on Coastal Engineering. ASCE, Orlando, Florida.
Cited by
- Interaction between a Solitary Wave and a Fixed Partially Submerged Body with Two Extended Porous Walls vol.147, pp.7, 2021, https://doi.org/10.1061/(asce)em.1943-7889.0001944