• Title/Summary/Keyword: slope

Search Result 8,640, Processing Time 0.037 seconds

MEASURES FOR STABILITY OF SLOPE ESTIMATION ON THE SECOND ORDER RESPONSE SURFACE AND EQUALLY-STABLE SLOPE ROTATABILITY

  • Park, Sung H.;Kang, Ho-Seog;Kang, Kee-Hoon
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.4
    • /
    • pp.337-357
    • /
    • 2003
  • This paper introduces new measures for the stability of slope estimation on the second order response surface at a point and on a sphere. As a measure of point stability of slope estimation, we suggest a point dispersion measure of slope variances over all directions at a point. A spherical dispersion measure is also proposed as a measure of spherical stability of slope estimation on each sphere. Some designs are studied to explore the usefulness of the proposed measures. Using the point dispersion measure, another concept of slope rotatability called equally-stable slope rotatability is proposed as a useful property of response surface designs. We provide a set of conditions for a design to have equally-stable slope rotatability.

Stability Analysis of Slope Considering Infiltration of Behind Ground (배면침투를 고려한 사면안정해석)

  • Shin, Jong-Ho;Kim, Hak-Moon;Jang, Kyung-Jun;Chae, Sung-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1060-1067
    • /
    • 2009
  • Previous research on the slope failure has mainly reported that most of the slope failures occur due to surface rainfall infiltration in the rainy season. A slope of which surface is protected by shotcrete or plants, can also fail due to increase in pore water pressure from the ground water flow beneath the surface, rather than from the surface. In this study such case of slope behavior is investigated using the model test and numerical method including strength reduction method. Hydraulic boundary conditions of the slopes is considered using coupled numerical scheme. The failure mechanism of the slope is investigated and the effect of pore water pressure on slope safety is identified. Increase in pore water pressure due to lateral infiltration has significantly reduced the stability of slope.

  • PDF

A Case Study on Slope Failure by Excessive Under Cut (절토사면 하부의 과도한 굴착에 따른 붕괴 사례 연구)

  • Rhee, Jong-Hyun;Kim, Seung-Hyun;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1154-1160
    • /
    • 2009
  • Cut slope failure is happened in various form by several causes. In this study, we searched causes of cut slope failure shortly, and we made a study of slope failure by excessive under cut. Under cutting slope does to add unstability. Thereby, cut slope failure can be happened on a large scale.

  • PDF

Engineering Approaches and Recent Advances of Slope Optimization in Surface Mines (노천광산에서의 사면 최적화를 위한 공학적 접근 및 최신 동향)

  • Park, Jun-Hyeok
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.35-43
    • /
    • 2021
  • Slope optimization aims to maximize the slope angle in an open pit mine, resulting in subsequent profits from additional ore extraction. The large open pit mines have adopted the advanced technologies to increase slope angle until they ensure the slope stability. This paper introduces a current stage of slope optimization efforts and best practices from the open pit mines.

3D-inertia Valve Component for Centrifugal Force-based Micro Fluid Control (원심력기반 3차원 관성밸브 모델링을 통한 정밀 미세유체제어)

  • Kang, Dong Hee;Kim, Na Kyong;Kang, Hyun Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.12-17
    • /
    • 2021
  • A three-dimensional slope valve component is used for controlling micro volume of liquid on a centrifugal force-based microfluidic disk platform, also called a lab-on-a-disk. The modeling factor of the slope valve component is determined to centrifugal force for liquid passing the crest of a slope valve via variation of slope length and angle as well as the radius to start point of slope valve. The centrifugal force is calculated by the equilibrium equation of the capillary and gravitational forces according to the microchannel surface roughness and the liquid volume, respectively. As a result, the slope valve is analyzed by the minimum angular velocity for liquid passing at crest point and the ratio between the length of micro liquid and slope length to obtain the factors for optimal slope angle modeling.

Basis Research for hazard map and Characteristic inquiry of Slope Failure by Rainfall (강우에 의한 붕괴 절개면 특성 고찰 및 위험도 작성을 위한 기초연구)

  • Yoo, Ki-Jeong;Koo, Ho-Bon;Baek, Yong;Rhee, Jong-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.509-512
    • /
    • 2003
  • Our country is serious difference of precipitation seasonally and about 66% of yearly mean rainfall is happening in concentration rainfall form between September on June. It requires consideration because of a lot of natural disasters by this downpour are produced. Slope failure is happened by artificial factor of creation of slope according to the land development, fill slope etc. and natural factor of rainfall, topography, nature of soil, soil quality, rock floor. Usually, Direct factor of failure slope is downpour. In this study, the Slope about among 55 places happened failure by downpour investigated occurrence position, geological etc and executed and inquire into character of rainfall connected with failure slope. Among character of rainfall, executed analysis about Max. hourly rainfall and cumulative rainfall of place that failure slope is situated and grasped the geological character of failure slope. Through this, inquire to character of failure slope by rainfall and take advantage of basis study for Hazard map creation.

  • PDF

Stability analysis of a rock slope in Himalayas

  • Latha, Gali Madhavi;Garaga, Arunakumari
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.125-140
    • /
    • 2010
  • Slope stability analysis of the right abutment of a railway bridge proposed at about 350 m above the ground level, crossing a river and connecting two huge hillocks in the Himalayas, India is presented in this paper. The site is located in a highly active seismic zone. The rock slopes are intensely jointed and the joint spacing and orientation are varying at different locations. Static slope stability of the rock slope is studied using equivalent continuum approach through the most commonly used commercial numerical tools like FLAC and SLOPE/W of GEOSTUDIO. The factor of safety for the slope under static conditions was 1.88 and it was reduced by 46% with the application of earthquake loads in pseudo-static analysis. The results obtained from the slope stability analyses confirmed the global stability of the slope. However, it is very likely that there could be possibility of wedge failures at some of the pier locations. This paper also presents the results from kinematics of right abutment slope for the wedge failure analysis based on stereographic projections. Based on the kinematics, it is recommended to flatten the slope from 50o to 43o to avoid wedge failures at all pier locations.

Improving Size Selectivity of Captured Coonstripe Shrimp (Pandalus hypsinotus) in Hokkaido by Altering the Slope Length and Angle of Pots

  • Kim, Seong-Hun;Lee, Ju-Hee;Kim, Hyung-Seok;Park, Seong-Wook
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.342-349
    • /
    • 2009
  • The purpose of the current study was to optimize shrimp-pot design to allow greater control over the size of captured individuals for the purposes of shrimp resource management. Tank experiments were conducted to determine the optimal slope length and slope angle by analyzing the sizes of shrimp that entered 25 model pots with combinations of five different slope lengths and five different angles. Shrimp size was measured using carapace length. The results showed that as the slope angle of the pot increased, the size of individuals that entered the pot increased. Furthermore, as the slope length increased, each of the five different slope angles of the pot increased, and the size of individuals entering also increased. The data indicated that the optimum pot design for reducing the capture of immature individuals had a $75^{\circ}$ slope angle and a 35.4 cm slope length.

The Monitoring System Using Multi Antenna GPS for Weak Slope (Multi Antenna GPS를 이용한 취약사면 상시모니터링 시스템)

  • Noh, Won-Seok;Kim, Wan-Jong;Jang, Hyun-Ick;Kim, Hak-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.677-694
    • /
    • 2009
  • While the budget has been allocated more for repairs and reinforcements, casualties are gradually increased due to slope disaster. Slope disaster causes road damaged as well as casualties. It also causes significant social and economic loss. The measurement device, which is installed inside ground of slope like inclinometer, has the high loss rate when slope is being slided. The electric type and the vibrating wire type have low durability because of corrosion. To cover the demerit of the present slope monitoring, the measurement method using the Multi-Antenna GPS has been developed. The Multi-Antenna GPS has been installed in the local slope as the regular monitoring system for slope. Although the initial cost of the Multi-Antenna GPS for installation is high, the additional cost is low. So it is the suitable method for large slope. The regular monitoring system using the Multi-Antenna GPS is the suitable measurement method for watching slope collapse, which is occurred widely, because it is economical, has high durability, and collects data with high resolution.

  • PDF

Stability analysis of slopes under groundwater seepage and application of charts for optimization of drainage design

  • Deng, Dong-ping;Lia, Liang;Zhao, Lian-heng
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.181-194
    • /
    • 2019
  • Due to the seepage of groundwater, the resisting force of slopes decreases and the sliding force increases, resulting in significantly reduced slope stability. The instability of most natural slopes is closely related to the influence of groundwater. Therefore, it is important to study slope stability under groundwater seepage conditions. Thus, using a simplified seepage model of groundwater combined with the analysis of stresses on the slip surface, the limit equilibrium (LE) analytical solutions for two- and three-dimensional slope stability under groundwater seepage are deduced in this work. Meanwhile, the general nonlinear Mohr-Coulomb (M-C) strength criterion is adopted to describe the shear failure of a slope. By comparing the results with the traditional LE methods on slope examples, the feasibility of the proposed method is verified. In contrast to traditional LE methods, the proposed method is more suitable for analyzing slope stability under complex conditions. In addition, to facilitate the optimization of drainage design in the slope, stability charts are drawn for slopes with different groundwater tables. Furthermore, the study concluded that: (1) when the hydraulic gradient of groundwater is small, the effect on slope stability is also small for a change in the groundwater table; and (2) compared with a slope without a groundwater table, a slope with a groundwater table has a larger failure range under groundwater seepage.