• 제목/요약/키워드: slip time

검색결과 420건 처리시간 0.026초

슬립률을 이용한 상용차용 공압식 브레이크 기반 ABS 알고리즘 개발 (Anti-lock Braking System for Commercial Vehicles with Pneumatic Brake System by Using Slip Ratio)

  • 김자유;권백순;이경수
    • 자동차안전학회지
    • /
    • 제12권2호
    • /
    • pp.21-26
    • /
    • 2020
  • This paper presents an anti-lock braking system for commercial vehicles with pneumatic brake system by using slip ratio. By virtue of system reliability, most commercial vehicles adopt pneumatic brake system. However, pneumatic brake systems control is more difficult than hydraulic systems due to a longer time delay and the system nonlinearity. One of the major factors in generating braking forces is the wheel slip ratio. Accordingly, the proposed ABS strategy employs the slip ratio threshold-based valve on/off control. This threshold-based algorithm is simple but effective to control the pneumatic brake systems. The control performance of the proposed algorithm has been validated via simulation studies using MATLAB/Simulink and Trucksim. The results show ABS by using slip ratio reduces the braking distance and improves vehicle control.

차량 선회 안정성을 위한 휠 슬립 제어시스템 개발 (Development of a Wheel Slip Control System for Vehicle Cornering Stability)

  • 홍대건;허건수;황인용;선우명호
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.174-180
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional braking control systems. In order to achieve the superior braking performance through the wheel slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a wheel slip control system is developed for maintaining the vehicle stability based on the braking monitor, wheel slip controller and optimal target slip assignment algorithm. The braking monitor estimates the tire braking force, lateral tire force and brake disk-pad friction coefficient utilizing the extended Kalman filter. The wheel slip controller is designed based on the sliding mode control method. The target slip assignment algorithm is proposed to maintain the vehicle stability based on the direct yaw moment controller and fuzzy logic. The performance of the proposed wheel slip control system is verified in simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

Modelling time-dependent cracking in reinforced concrete using bond-slip Interface elements

  • Chong, Kak Tien;Gilbert, R. Ian;Foster, Stephen J.
    • Computers and Concrete
    • /
    • 제1권2호
    • /
    • pp.151-168
    • /
    • 2004
  • A two-dimensional nonlinear finite element model is developed to simulate time-dependent cracking of reinforced concrete members under service loads. To predict localized cracking, the crack band model is employed to model individual crack opening. In conjunction with the crack band model, a bond-interface element is used to model the slip between concrete and reinforcing steel permitting large slip displacements between the concrete element nodes and the steel truss element nodes at crack openings. The time-dependent effects of concrete creep and shrinkage are incorporated into the smeared crack model as inelastic pre-strains in an iterative solution procedure. Two test examples are shown to verify the finite element model with good agreement between the model and the observed test results.

인간의 보행 및 미끄러짐 특성에 기반한 끌기형 미끄러짐 저항 측정 조건 (Measurement Criteria for Drag-Sled Type Slip Resistance Tester Based on Human Gait and Slip)

  • 박재석;권혁면;오환섭
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.179-184
    • /
    • 2012
  • This study was performed to find out the measurement criteria of slip resistance from analysis of human gait and slips. Many kinds of slip resistance testers were developed based on mechanical friction testers. But, there are, as yet, no unambiguous slip resistance measurement methodologies and generally accepted safety criteria or safety thresholds for estimating slipping hazard exposures. Also, there are variety of measuring conditions between those testers. The measurement criteria should be tested within the range of human slipping conditions observed in biomechanical studies. It's results should clearly consider whether the devices reflect the human slipping conditions. In this study a dragsled type friction tester, which was constructed in accordance with ISO 15133 basically, was used. Test conditions were set in order to determine the range of measurement criteria. It is shown that drag velocity should be more than 1 m/s, acceleration be more than 10 $m/s^2$, contact time be less than 0.1sec, and contact pressure be within 350~400 kPa.

CMP에서의 스틱-슬립 마찰특성에 관한 연구 (A Study on the Characteristics of Stick-slip Friction in CMP)

  • 이현섭;박범영;서헌덕;박기현;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제18권4호
    • /
    • pp.313-320
    • /
    • 2005
  • Stick-slip friction is one of the material removal mechanisms in tribology. It occurs when the static friction force is larger than the dynamic friction force, and make the friction curve fluctuated. In the friction monitoring of chemical mechanical polishing(CMP), the friction force also vibrates just as stick-slip friction. In this paper, an attempt to show the similarity between stick-slip friction and the friction of CMP was conducted. The prepared hard pa(IC1000/Suba400 stacked/sup TM/) and soft pad(Suba400/sup TM/) were tested with SiO₂ slurry. The friction force was measured by piezoelectric sensor. According to this experiment, it was shown that as the head and table velocity became faster, the stick-slip time shortened because of the change of real contact area. And, the gradient of stick-slip period as a function of head and table speed in soft pad was more precipitous than that of hard one. From these results, it seems that the fluctuating friction force in CMP is stick-slip friction caused by viscoelastic behavior of the pad and the change of real contact area.

사파이어($\alpha$-Al$_2$O$_3$) 단결정에 있어 basal slip (0001)1/3<1120>전위 Part I : 재결합거동 (Basal slip (0001)1/3<1120> dislocation in sapphire ($\alpha$-Al$_2$O$_3$) single crystals Part I : recombination motion)

  • Yoon, Seog-Young
    • 한국재료학회지
    • /
    • 제11권4호
    • /
    • pp.278-282
    • /
    • 2001
  • 사파이어($\alpha$-$Al_2$$O_3$) 단결정에 있어 basal slip (0001)1/3<1120>의 부분전위의 재결합거동을 알아보기 위해 prism plane (1120)의 사파이어 재료를 사용하여 4점 곡강도 시험을 행하였다. 이 굽힘시험은 온도 $1200^{\circ}C$~$1400^{\circ}C$에서 그리고 응력은 90MPa, 120MPa, 150MPa에서 행하여졌다 굽힘시험 동안 basal전위가 이동하기 위해 잠복기가 필요하였다. 실험온도 범위내에서 잠복기의 활성화에너지는 5.6-6.0eV이었으며, 이 잠복기는 자체-상승운동으로 분해된 부분전위들이 재결합하는데 필요한 시간인 것으로 추정되었다. 한편, 이 활성화에너지는 $Al_2$$O_3$에 있어 산소의 자체 확산을 위한 에너지 (대fir 6.3eV)와 거의 일치하였다. 이 결과를 통하여, 두 부분전위들의 재결합은 부분전위사이 적층결함으로 산소 자체확산에 의해 제어되는 것으로 여겨진다.

  • PDF

저 레이놀즈 수에서 실린더 경계 유속조건에 따른 흐름 특성 (Flow Characteristics According to Velocity Conditions of Cylinder Boundary Under Low Reynolds Number)

  • 송창근;서일원;김태원
    • 대한토목학회논문집
    • /
    • 제33권6호
    • /
    • pp.2267-2275
    • /
    • 2013
  • 기존의 천수흐름 해석 상용모형에서는 내부 경계조건을 단순히 완전활동조건으로 가정하여 유체의 흐름을 해석함으로써 구조물 주위에서의 유속, 와도, 수위, 전단력의 분포, 항력 및 양력의 시간에 따른 변화 등을 올바르게 해석하지 못하였다. 본 연구에서는 구조물 주위에서의 흐름특성을 정확하게 예측할 수 있는 유한요소모형을 개발하고, 구조물에서의 경계조건을 활동길이를 이용한 부분활동조건으로 묘사하여 내부경계조건에 따른 원형 실린더 후면에서의 층류 흐름특성을 분석하였다. 종횡방향 유속 및 와도의 시간에 따른 변화, 후류길이, 활동길이에 따른 와류열의 변화와 질량보존율을 비교한 결과 완전활동조건을 부여한 경우에는 와류열이 전혀 형성되지 않고 완전한 층류흐름이 발생하였다. 부분활동조건을 입력한 경우 실린더 표면에서의 유속분포가 변화되어 전단력의 크기와 와도의 발생에 영향을 미치므로 무활조건을 부여한 경우에 비해 와류열의 발생 주기가 짧아졌다. 최대 질량보존 오차는 무활조건을 적용한 경우 0.73%로 나타났으며, 무활조건에 비해 부분활동조건을 부여한 경우의 오차율이 최대 0.21% 감소하였다.

마찰 저감을 위한 비극성 첨가제에 따른 acrylonitrile butadiene styrene계 플라스틱의 stick-slip 이음 저감 연구 (Study on the reduction of stick-slip noise in acrylonitrile butadiene styrene-based plastics using non-polar additives to reduce friction)

  • 여상준;정예원;최성욱;김효준;박건욱;손민영
    • 한국음향학회지
    • /
    • 제43권1호
    • /
    • pp.49-59
    • /
    • 2024
  • 최근 환경규제가 강화되고 고유가 문제로 인하여 전기차 시장이 점차 커지고 있으며 또한 내연기관 자동차에서도 엔진의 Noise, Vibration, Harshness(NVH) 관련 소음이 저감되고 외부에서 유입되는 소음의 차폐 기술이 발전됨에 따라 Buzz, Squeak, Rattle(BSR) 이음의 민감도가 증가하는 추세이다. 본 연구에서는 자동차의 Panoramic Curved Display(PCD)에서 발생하는 Stick-slip 이음과 고분자 플라스틱의 표면에너지 및 극성 성분과의 상관관계에 대하여 분석하였다. 극성 고분자 소재인 Acrylonitrile Butadiene Styrene(ABS)와 PolyCarbonate-Acrylonitrile Butadiene Styrene(PC-ABS)를 대상으로 컴파운드 소재를 제작하여 평가하였다. 결과적으로 고분자 플라스틱의 극성성분이 3.86 mN/m 이상일 때 Stick-slip 거동이 발생하였으며, 시간에 따른 마찰 거동에서 absolute transition slope가 증가할수록 Stick-slip의 이음 가능성이 증가하고 마찰계수의 값 차이가 클수록 Stick-slip 이음의 세기가 증가하였다.

Slip-Related Changes in Plantar Pressure Distribution, and Parameters for Early Detection of Slip Events

  • Choi, Seungyoung;Cho, Hyungpil;Kang, Boram;Lee, Dong Hun;Kim, Mi Jung;Jang, Seong Ho
    • Annals of Rehabilitation Medicine
    • /
    • 제39권6호
    • /
    • pp.897-904
    • /
    • 2015
  • Objective To investigate differences in plantar pressure distribution between a normal gait and unpredictable slip events to predict the initiation of the slipping process. Methods Eleven male participants were enrolled. Subjects walked onto a wooden tile, and two layers of oily vinyl sheet were placed on the expected spot of the 4th step to induce a slip. An insole pressure-measuring system was used to monitor plantar pressure distribution. This system measured plantar pressure in four regions (the toes, metatarsal head, arch, and heel) for three events: the step during normal gait; the recovered step, when the subject recovered from a slip; and the uncorrected, harmful slipped step. Four variables were analyzed: peak pressure (PP), contact time (CT), the pressure-time integral (PTI), and the instant of peak pressure (IPP). Results The plantar pressure pattern in the heel was unique, as compared with other parts of the sole. In the heel, PP, CT, and PTI values were high in slipped and recovered steps compared with normal steps. The IPP differed markedly among the three steps. The IPPs in the heel for the three events were, in descending order (from latest to earliest), slipped, recovered, and normal steps, whereas in the other regions the order was normal, recovered, and slipped steps. Finally, the metatarsal head-to-heel IPP ratios for the normal, recovered, and slipped steps were $6.1{\pm}2.9$, $3.1{\pm}3.0$, and $2.2{\pm}2.5$, respectively. Conclusion A distinctive plantar pressure pattern in the heel might be useful for early detection of a slip event to prevent slip-related injuries.

Brake-by-Wire 시스템을 위한 강인한 휠 슬립 제어 (Robust Wheel Slip Control for Brake-by-Wire System)

  • 홍대건;허건수;강형진;윤팔주;황인용
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.102-109
    • /
    • 2005
  • Wheel-slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS systems. But, in order to achieve the superior braking performance through the wheel-slip control, real-time information such as the tire braking force is required. For example, in the case of EHB (Electro-Hydraulic Brake) systems, the tire braking force cannot be measured directly, but can be approximated based on the characteristics of the brake disk-pad friction. The friction characteristics can change significantly depending on aging of the brake, moisture on the contact area, heat etc. In this paper, a wheel slip The proposed wheel slip control system is composed of two subsystems: braking force monitor and robust slip controller In the brake force monitor subsystem, the tire braking forces as well as the brake disk-pad friction coefficient are estimated considering the friction variation between the brake pad and disk. The robust wheel slip control subsystem is designed based on sliding mode control methods and follows the target wheel-slip using the estimated tire braking forces. The proposed sliding mode controller is robust to the uncertainties in estimating the braking force and brake disk-pad friction. The performance of the proposed wheel-slip control system is evaluated in various simulations.