• Title/Summary/Keyword: slip surface

Search Result 485, Processing Time 0.026 seconds

Shape deformation and wear sensation in wearing on support type panty stocking (고탄력 팬티스타킹 착용에 의한 형태변형 및 착용감)

  • 류현혜;성수광
    • Journal of the Ergonomics Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.37-57
    • /
    • 1995
  • The purpose of this study was to investigate the elastic effect of deformation and restriction in wearing a support type panty stocking (PS). The study investigated deformation rate in all surface area, deformation rate in local area, length deformation rate, changes in slip and feeling of restriction under the standard laboratory condition. Two healthy adult females in twenties wore four types of PS. The result were as follows : The deformation rate in all surface area was 117 .approx. 132% in wearing support type PS, 157% in wearing mono type PS, due to the intensities of restriction. The deformation rate in local area was in order, course > oblique > wale direction. The largest deformation rate was observed in hip girth. Between the deformation rates in all surface and local areas was a high correlation acknowledged, especially the course direction showed a high correlation. Support type PSs showed more deformation and changes of slip than wool and mono type PS. Especially, changes of slip at the knee appeared greatly. The responses of restriction evaluated from a paired comparison method were in order, JS 2 > KS 4 > KS 9 > KS 5 > KS 1 > KM 3.

  • PDF

A Study on Vortex Pair Interaction with Fluid Free Surface

  • Kim, K.H.;Kim, S.W.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.26-31
    • /
    • 2005
  • Today, the research to examine a fact that interaction between the air and the fluid free surface affects the steady state flow and air. We proved the interaction between vortex pairs and free surface on each condition that is created by the end of delta wings. Another purpose of this study is to investigate the effect of surface active material which call change the surface tension and we must consider when we refer to turbulent flow on surface tension. Therefore, this research examined the growth process of vortex pairs on condition of clean, contaminated free surface and wall after we made vortex pairs through counter rotating flaps. The results of this study suggest that vortex pairs in clean free surface rise safely but the vortex pairs in contaminated free surface and rigid, no slip is made secondary vortex or rebounding. However the secondary vortex in rigid, no slip is stronger than before. and we can find the vortex shape which roll up more completely. However, these will disappear by the effect of wall.

  • PDF

An experimental study on the fretting fatigue crack behaviour of A12024-T4 (A12024-T4의 프레팅 피로균열거동에 관한 실험적 연구)

  • Lee, Bong-Hun;Lee, Sun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.511-518
    • /
    • 1997
  • The technique of fretting fatigue test was developed and fretting fatigue tests of A12024-T4 were conducted under several conditions. The newly developed calibration methods for measuring surface contact tractions showed good linearity and repeatability. The plate type specimen to which tow bridge type pads were attached and vision system was used to observe the crack behaviour. The oblieque cracks appeared in the early stage of crack growth and they became mode I cracks as they grow about 1 mm. The mode I transition points were found to be longer when surface tractions are higher or bulk stress is lower. Before the crack becomes mode I crack, 'well point' where crack grow about rate is minimum, was detected under every experimental condition. The crack behaviour was found to be affected by surface tractions, contact area, bulk stress. It was also found that partial slip and stick condition is most detrimental and the crack starts from the boundary of stick and slip. For gross slip crack started at the outside edge of pad. After crack mode transition, fretting fatigue cracks showed almost same behaviour of plain mode I fatigue cracks. Equivalent stress intensity factor was used to analyze the behaviour of fretting fatigue cracks and it was found that stress intensity factors can be applied to fretting fatigue cracks.

Observation of Tribologically Transformed Structures and fretting Wear Characteristics of Nuclear Fuel Cladding (핵연료 봉의 마찰변태구조 관찰과 프레팅 마멸 특성)

  • Kim, Kyeong-Ho;Lee, Min-Ku;Rhee, Chang-Kyu;Wey, Myeong-Yong;Kim, Whung-Whoe
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2581-2589
    • /
    • 2002
  • In this research, fretting tests were conducted in air to investigate the wear characteristics of fuel cladding materials with the fretting parameters such as normal load, slip amplitude, frequency and the number of cycles. A high frequency fretting wear tester was designed for this experiment by KAERI. After the experiments, the wear volume and the shape of wear contour were measured by the surface roughness tester. Tribologically transformed structures(TTS) were analysed by means of optical and scanning electron microscopes to identify the main wear mechanisms. The results of this study showed that the wear volume were increased with increasing slip amplitude, and the shape of wear contour was transformed V-type to W-type. Also, it was found that the critical slip amplitude was 168${\mu}{\textrm}{m}$. These phenomena mean that wear mechanism transformed partial slip to gross slip to accelerate wear volume. The wear depth increased with an increase of friction coefficient due to increase of normal load and frequency. The fretting wear mechanisms were believed that, after adhesion and surface plastic deformation occurred by relative sliding motion on the contact between two specimens, TTS creation was induced by surface strain hardening and wear debris were detached from the contact surface which were produced by the micro crack propagation and creation.

Slope Failure Surface Using Finite Element Method

  • Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.27-40
    • /
    • 1999
  • In limit equilibrium methods(LEM), all methods employ the same definition of the safety factor as a ratio of the shear strength of the soil to the shear stress required for equilibrium, employing certain assumptions with regard to equilibrium. In addition, in the conventional finite element method of analysis, the minimum safety factor is obtained assuming certain slip surfaces after the state of stress are found. Although the stress states are obtained from the finite element method(FEM), the slope stability analysis follows the conventional method that assumes a potential slip surface. In this study, a slope stability analysis based on FEM is developed to locate the slip surface by tracking the weakest points in the slope based on the local safety factor considering the magnitude and direction of the shear stresses. It has also been applied to be compared with the slip surfaces predicted by LEM. A computer program has been developed to draw contour lines of the local safety factors automatically. This method is illustrated through a simple hypothetical slope, a natural soil slope, and a dam slope. The developed method matches very well with the conventional LEM methods, with slightly lower global safety factors.

  • PDF

Effect of Corrosion Level and Crack Width on the Bond-Slip Behavior at the Interface between Concrete and Corroded Steel Rebar (부식 수준 및 균열폭에 따른 부식된 철근과 콘크리트 계면의 부착-미끄러짐 거동 )

  • Sang-Hyeon Jo;Seong-Hoon Kee;Jung-Jae Yee;Changkye Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.54-63
    • /
    • 2023
  • In this paper, the effect of corrosion level and crack width on the cohesive strength-slip behavior of corroded steel rebar and concrete interface is conducted. The existing studies mainly focus on the decrease in bond strength with respect to the level of corrosion; there are, however, few studies on the decrease in cohesive strength according to the crack width of the concrete surface due to corrosion. Therefore, in this study, a series of tests for the cohesive strength, slip behavior and mass loss of the reinforcing bar is evaluated at the surface of corroded rebar and concrete. It is found that the tendency to decrease the bond strength is closely related to the crack width rather than the corrosion level. Hence, to determine the degradation performance for the bond strength-slip behavior relation, the occurrence of cracks on the concrete surface can be a suitable index.

Fretting Oamage Evaluation of Zircaloy-Inconel Contact (지르칼로이-인코넬 접촉에서의 프레팅 손상 평가)

  • 김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.263-268
    • /
    • 2000
  • The fretting damage of the contact between Zircaloy-4 and Inconel 600 have Investigated. A fretting wear tester was designed to be suitable for this fretting test. In this study, the number of cycles, slip amplitude and normal load were selected as main factors of fretting wear. As the result of this research the wear volume increased with the increase of loads, slip amplitudes and the number of cycles and was more affected by slip amplitudes rather than by load. According to SEM, stick, partial slip, gross slip were observed on the surface of both specimens and wavy worn surfaces as the typical fretting damage were also Investigated due to accumulation of plastic flow.

  • PDF

Improvement of Slip Displacement Evaluation for the Analysis of Tube Fretting Wear (튜브 프레팅마멸 분석을 위한 미끄럼변위 해석방법 개선)

  • Song, Ju-Sun;Kim, Hyung-Kyu;Lee, Young-Ho;Kim, Jae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.67-72
    • /
    • 2004
  • Fundamentally, slip displacement should be known to solve the problem related to the fretting wear. For this, methods for measuring the slip displacement range in the contact surface of the tube and the supports were introduced and analyzed in this study. Also the increment of the slip displacement during a cycle was calculated using the revised formulas. As a result, the slip displacement newly evaluated was much higher ($7{\sim}50$ times) than that previously evaluated especially in the case of the gap existence. This enables to explain the severe wear found when there was a gap between the tube and the supports.

  • PDF

Rheological Behavior of Coal-Fly-Ash and Clay Slip (석탄회-점토계 슬립의 유동학적 거동)

  • 이기강;박천주;김유택;김석범;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.180-184
    • /
    • 1998
  • It was examined that the rheological behaviors of fly ash 70wt%-clay 30wt% slip in which nonplastic fly ash was a major component. We have systematically investigated the effects of deflocculant(Tetrasodium pyrophosphate ; Na4P2O7 nH2O Sodium silicate; Na2SiO3) and coagulant(CaSO4) on the rheological behavior of ash-clay slip. Ash-clay slip have been characterized on the basis of the time dependent rheology which was done out by the gel-curve test. Dispersion mechanism of ash-clay slip is the steric stabilization by the Na2SiO3 coating of cenospheres surface. Coagulated slip seems to have the new network structure and shows the gellation behaviors which makes it possible to direct coagulated casting(DCC).

  • PDF