• Title/Summary/Keyword: slip ring

Search Result 72, Processing Time 0.023 seconds

A Study on The Material Selection and Characteristic Investigation of Rotor Bar and End Ring of Induction Motor for High Speed Train (고속전철용 견인전동기의 회전자 바와 엔드링의 재질선정 및 특성고찰에 관한 연구)

  • 이상우;김근웅;윤종학;이기호;한성수
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.187-193
    • /
    • 1998
  • An inverter-driven induction motor is used as the traction motor for a high speed drive system that required safty, reliability and performance and so on. rotor bar and end ring of the traction motor are the electrical equipments which form the conductive close loop and then induce current by interaction wi th the current of stator. the materials selection of rotor bar and end ring are seriously considered in the aspects of electrical and mechanical specification and Motor slip relation to inverter. Particularly motor slip guarantee the safty and reliability of induction motor. this paper show the material selection and the determining of slip in the design of traction motor for high speed train by analyzing the specifications of material being used currently.

  • PDF

A Study on the Design Verification by Using Finite Elements Method and Quality Improvement of Radar by Managing Change Points of 4M (유한요소 기법을 활용한 설계검증 및 4M 변경점 관리를 통한 레이더장비 품질 신뢰성 확보에 관한 연구)

  • Jo, Hee Jin;Pak, Se Jin;Lee, Nam Ho;Jung, Won Yong
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.437-451
    • /
    • 2019
  • Purpose: The purpose of this study is to improve the quality of the PGM system by improving the structure and production process of slip-ring rotary joint for radar. Methods: The improvement measures for each cause are established through failure analysis of broken items. Specifically, changing in the housing to improve the heating system. Changing the transportation method to prevent damage to equipment during transport. Changing work process of the attenuator ring to prevent damage. etc. Results: The results of this study are as follows; improving the heating system reduces heat generated by the attenuator by about 7 degrees and obtain additional temperature margins. Reduction of defect rate because of adding X-band rotary joint run-out measurement test, ESS of slip-ring rotary joint and Transportation improvement(reinforced flight boxes, tube protection, etc). Getting stable VSWR values by improving work process of attenuator overheating due to a bad bonding process. Conclusion: Through this study, improvements were made to slip-ring rotary joint that failed repeatedly for various reasons. As a result of the application of the improvements, the same fault does not occur until now, so we can see that the quality of PGM has improved.

비접촉 토오크센서의 개발(I)

  • 손대락;임순재;김창석;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.75-79
    • /
    • 1991
  • 자동차 엔진, 점프, 모우터 둥과 같은 회전동력장치의 일률이나 효율을 측정하거나 혹은, 회전동력장치를 과부하 없이 운용하고자 할 때 토오크센서를 이용한다. 이 때 사용되는 토오크센서는 대부분 strain gage와 slip ring을 이용하고 있는 데, 이러한 종류의 센서들은 감지된 토오크를 회전하는 축으로부터 외부로 그 신호를 전달하기 위해서 slip ring 이나 magnetic coupler와 같은 중간의 신호 전달장치 ( signal transmitter )를 설치하여야 한다.(중략)

  • PDF

Performance Analysis of External Rotor Type Permanent Magnet Motor/Generator (외전형 영구자석형 전동/발전기의 성능해석)

  • Jang, S.M.;Go, J.W.;Yoon, I.K.;Lee, S.H.;Jeong, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.641-643
    • /
    • 2002
  • Synchronous generator needs slip-ring and brush for supplying current to rotor with external source. but slip-ring and brush have some problems to supply DC power to field winding with friction and high power loss due to brush voltage drop at high field current. Thus synchronous generator have been designed to brushless machine. Brushless synchronous machines of using permanent halbach array can composed without back core and coreloss. In this paper, analyse on the characteristics of external rotor type permenant magnet brushless with halbach array.

  • PDF

A study on the characteristics of torque transducer (토오크 변환기의 특성에 대한 연구)

  • 최만용;임동규;한응교
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.48-55
    • /
    • 1982
  • In the present the strain gauge type torque transducers consist of solid shaft as sensor, slip ring, brush and bridge circuit as detecting circuit. So in the case of measuring the low-capacity torque, the error caused by technical mistake in mounting stain gauge on the small sensor and especially by contact resistance between slip ring and brush takes place more than the large sensor. Therefore in this study constant voltage in order to have no effect of contact resistance is supplied to the hollow shaft and Schrobron Bridge Circuit. Through the experiment good results were obtained as follows; linearity, hysterisis and zero drift as static characteristics is within 1% F.S respectively. Also when loading, zero drift is about 2% F.S.

  • PDF

Mechanical Characteristics of High Tension Bolted Joint Connections using Shear Ring (전단링을 사용한 고장력볼트 이음부의 역학적 특성에 관한 연구)

  • Lee, Seung Yong;Park, Young Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.327-338
    • /
    • 2006
  • Friction type high tension bolted joints is one of the most common steel structure connections and requires significant concerns on axial force of the bolts. However, its high shear capacity is not appropriately considered in design and hence the number of bolts is over-designed than actually required. It is primarily due to a slip-load-based design method. This study, therefore, suggests a new technology of connection using a shear ring, which may reduce the shortcomings from the friction-typed high tension bolted joints and maximize the advantages from the bearing-typed joints. Experimental and numerical studies were performed to compare the capacity of the suggested method with traditional high tension bolted joints. From the results, it is known that the suggested connections has higher bearing capacity than friction-typed high tension bolted joints due to the higher shear resistance from the ring. For further study, it may be necessary to investigate on design parameters including the depth of shear ring, for increased connection capacity.

Effect of defects on lifetime of silicon electrodes and rings in plasma etcher (플라즈마 에쳐용 실리콘 전극과 링의 수명에 미치는 결함의 영향)

  • Eum, Jung-Hyun;Chae, Jung-Min;Pee, Jae-Hwan;Lee, Sung-Min;Choi, Kyoon;Kim, Sang-Jin;Hong, Tae-Sik;Hwang, Choong-Ho;Ahn, Hak-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.101-105
    • /
    • 2010
  • Silicon electrode and ring in a plasma etcher those are in contact with harsh plasma suffer from periodic heating and cooling during their lifetime. This causes the silicon components failure due to thermal stress remaining the persistent slip bands (PSBs) on their surfaces. The factors that determine the lifetime of silicon electrode and ring were discussed with respect to silicon ingot. The impurity level and the average defect concentration measured with glow discharge mass spectrometer (GDMS) and microwave photo-conductance decay (${\mu}$-PCD) were compared with the grade of silicon ingots those are divided to slip-free and slip-allowed ingot. Some silp-allowed samples showed planar defects along <110> direction on {001} surface. The role of these defects was suggested from the viewpoint of the lifetime of silicon components.

A Theoretical and Experimental Study on the Tribological Size Effect in Microforming Processes (마이크로 성형에서 마찰거동의 크기효과에 대한 이론적 및 실험적 연구)

  • Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.394-400
    • /
    • 2013
  • Microforming is a very efficient and economical technology to fabricate very small metallic parts in various applications. In order to extend the use of this forming technology for the production of microparts, the size effect, which occurs with the reduction of part size and affects the forming process significantly, must be thoroughly investigated. In this study, the tribological size effect in microforming was studied using modeling and scaled ring compression experiments. A micro-scale friction approach based on the slip-line field theory and lubricant pocket model was used to understand the friction mechanism and explain the tribological size effect. Ring compression tests were performed to analyze the interfacial friction condition from the deformation characteristics of the ring specimens. In addition, finite element analysis results were utilized to quantitatively determine the size-dependent frictional behavior of materials in various process conditions. By comparing theoretical results and experimental measurements for different size factors, the accuracy and reliability of the model were verified.

Variation of Operating Clearance Depending on Cooling Methods of High-Speed Roller Bearings for Aerospace Applications (항공용 고속 롤러베어링의 냉각 방식에 따른 작동간극 변화)

  • Jisu Park
    • Tribology and Lubricants
    • /
    • v.39 no.4
    • /
    • pp.123-132
    • /
    • 2023
  • In this study, the expansion, stress, and operating clearance of bearing elements during operation are observed using the inner/outer ring temperature test data of a 3.0×106 DN-class roller bearing. The operating clearance characteristics of inner-/outer-ring cooling (IORC) bearings are compared to those of inner-ring cooling (IRC) bearings. For IRC bearings, the thermal expansion of the outer ring is the most important factor in clearance variation. As a result, the operating clearance is less than the initial clearance of 61 ㎛, and the operating clearance decreases to 0.5 ㎛ at 25,500 rpm. Conversely, the temperature of the outer ring of IORC bearings is lower than that of IRC bearings, so the operating clearance is kept smaller. When the coolant flow rate to the outer ring is approximately 1.5 to 2.0 L/min, the temperature difference between the inner and outer rings is minimized and the operating clearance is maintained at a significantly lower level than IRC bearings. Small operating clearances are expected to be effective in reducing cage slip and skid damage in roller bearings. The results and analysis procedures of this study can be utilized to design of bearing clearance, lubricant flow rate, and assembled interference in the early design stage of aerospace roller bearings.