• Title/Summary/Keyword: slip flow

Search Result 362, Processing Time 0.021 seconds

A Study on the Injection Characteristics of Urea Solution to Improve deNOx Performance of Urea-SCR Catalyst in a Heavy Duty Diesel Engine (대형 디젤 엔진용 요소분사 SCR촉매의 deNOx 성능향상을 위한 요소수용액의 분사특성 연구)

  • Jeong, Soo-Jin;Lee, Chun-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.165-172
    • /
    • 2008
  • Urea-SCR, the selective catalytic reduction using urea as reducing agent, has been investigated for about 10 years in detail and today is a well established technique for deNOx of stationary diesel engines. In the case of the SCR-catalyst a non-uniform velocity and $NH_3$ profile will cause an inhomogeneous conversion of the reducing agent $NH_3$, resulting in a local breakthrough of $NH_3$ or increasing NOx emissions. Therefore, this work investigates the effect of flow and $NH_3$ non-uniformities on the deNOx performance and $NH_3$ slip in a Urea-SCR exhaust system. From the results of this study, it is found that flow and $NH_3$ distribution within SCR monolith is strongly related with deNOx performance of SCR catalyst. It is also found that multi-hole injector shows better $NH_3$ uniformity at the face of SCR monolith face than one hole injector.

Performance Test and Aerodynamic Design on the High Pressure Ratio Centrifugal Compressor of a Turbocharger (과급기의 고압력비 원심압축기 공력설계 및 시험평가)

  • Kim, Hong-Won;Ryu, Seung-Hyup;Lee, Geun-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.13-20
    • /
    • 2014
  • It is necessary to design a compressor with high pressure ratio that satisfies the IMO(international maritime organization) NOx emission regulation for the marine diesel engine. Impeller was designed using the modified slip factor with the flow coefficient. The main purpose of this study is to investigate the sensitivity of the compressor performance by the vaned diffuser geometries. The first vaned diffuser type was based on a NACA airfoil, the second was channel diffuser, and the third was conformally transformated configuration of a NACA65(4A10)06 airfoil. The sensitivity of the performance was calculated using a commercial CFD program for three different diffuser geometries. The channel diffuser showed the wide range of operation and higher pressure characteristics, comparing with the others. This is attributed to the flow stability at diffuser. Combined with this results with impeller design, the optimized compressor was designed and verified by the test results.

Velocity and Pressure Measurement of Channel Cavity Flow by PTV (PTV에 의한 채널캐비티 유동의 속도 및 압력계측)

  • Cho, D.H.;Kim, J.G.;Lee, Y.H.
    • Solar Energy
    • /
    • v.17 no.3
    • /
    • pp.59-66
    • /
    • 1997
  • The present study adopted the PTV method for the velocity acquisition. The system consists of an image grabber built-in a personal computer and a laser-based sheet light projector and particle identification softwares. Velocity vectors are obtained, by PTV and they are used as velocity components for Poisson equation for pressure. Related boundary conditions and no-slip condition at solid wall and the linear velocity extrapolation on the upper side of cavity are well examined for the present study. For calculation of pressure, resolution of grid is basically $40{\times}40$ and 2-dimensional uniform mesh using MAC staggered grid is adopted. The result of experiment reveal that, newly suggested measuring method is capable of estimating pressure and velocity distribution of flow field reasonably.

  • PDF

MIGRATION OF ELASTIC CAPSULE IN A CHANNEL FLOW (채널 유동 내 유연한 캡슐 움직임에 대한 수치해석)

  • Shin, S.J.;Sung, H.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.504-507
    • /
    • 2011
  • The inertial migration of a two-dimensional elastic capsule in a channel flow was studied over the Reynolds number range $1{\leq}Re{\leq}100$. The lateral migration velocity, slip velocity, and the deformation and inclination angle of the capsule were investigated by varying the lateral position, Reynolds number, capsule-to-channel size ratio(${\lambda}$), membrane stretching coefficient(${\Phi}$), and membrane bending coefficient(${\gamma}$). During the initial transient motion, the lateral migration velocity increased with increasing Re and ${\lambda}$ but decreased with increases in ${\Phi}$, ${\gamma}$ and the lateral distance from the wall. The initial behavior of the capsule was influenced by variation in the initial lateral position ($y_0$), but the equilibrium position of the capsule was not affected by such variation. The balance between the wall effect and the shear gradient effect determined the equilibrium position. As Re increased, the equilibrium position initially shifted closer to the wall and then moved towards the channel center. A peak in the equilibrium position was observed near Re=30 for ${\gamma}=0.1$, and the peak shifted to higher Re as ${\gamma}$ increased. Depending on the lateral migration velocity, the equilibrium position moved toward the centerline for larger ${\gamma}$ but moved toward the wall for larger ${\Phi}$ and ${\gamma}$.

  • PDF

The Effect on Performance of Disk-type Drag Pump Channel-type (원판형 드래그펌프 채널형상의 성능에 미치는 영향)

  • Kwon, Myoung-Keun;Lee, Seung-Jae;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.816-821
    • /
    • 2003
  • The pumping characteristics of a disk-type drag pump (DTDP) from free molecular flow region to the slip flow region are calculated by the direct simulation Monte Carlo (DSMC) method. In this study, the pumping performance is studied numerically for several channel depths. The interaction between molecules is modeled by variable hard-sphere (VHS). The no time counter method is used as a collision sampling technique. The clearance between rotor and stator is considered an effect on performance. Spiral channels are cut on both upper and lower sides of rotating disks, and stationary disks are planar. A three-dimensional DSMC method for the analysis of steady rarefied flows in a single-stage DTDP has been developed. Velocity and density fields were obtained by the DSMC simulation in the rotor. The present experimental data in the outlet pressure range of $7.5{\times}10^{-3}{\sim}4$ Torr were compared with the DSMC results in the single-stage DTDP. Comparison between the experimental data and DSMC results showed good agreement.

  • PDF

Effect of Particle Migration of the Characteristics of Microchannel Flow

  • Kim Y. W.;Jin S. W.;Kim S. W.;Yoo J. Y.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.119-124
    • /
    • 2004
  • Experimental study was conducted to characterize the flow effect of particle migration in a microchannel which can be used to deliver small amount of liquids, drugs, biological agents and particles in microfluidic devices. Fluorescent particles of $1\{mu}m$ diameter were used to obtain velocity profiles of the fluid in which large particles of $10\{mu}m$ diameter were suspended at different volume fraction of 0.6 and $0.8\%$. Measurements were obtained by using micro-PIV system which contains a Nd:YAG laser with a light of 532-nm wavelength, an inverted epi-fluorescent microscope and a cooled CCD camera to record particle images. The volume fraction of $\phi$ and the particle Reynolds number $Re_p$Rep were used as a parameter to assess the influence of the velocity profile of the suspensions. To expect the slip velocity between the particle and fluids, experiments were carried out at low volume fraction. It was shown that the velocity profile was not influenced by Rep but influenced by the volume fraction, which is in similar trend with the previous study.

  • PDF

Fluid Film Characteristics between Cylinder Block and Valve Plates in Oil Hydraulic Piston Pumps (유압 피스톤 펌프의 실린더 블록과 밸브 플레이트 사이의 유막 특성)

  • Jung J.Y.;Song K.K.;Oh S.H.;Kim J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.2
    • /
    • pp.8-14
    • /
    • 2004
  • Abstract: In the oil hydraulic piston pumps the clearance between the valve plate and cylinder block plays an important role for volumetric and overall efficiency. Thus, adequate lubricational fluid film is needed for the interface. In this study, fluid film thickness is measured by a gap sensor and a slip ring under operational conditions to observe the behavior of the lubrication mechanism in detail. To investigate the effect according to the valve plate types in view of the fluid film, three different types were designed. Leakage flow rate and shaft torque were also measured to clarify the effect according to the valve plate types. A broad range of experiments were conducted to provide reasonable data on the effect of fluid film. In this experiments two main parameters were found, of which the one is the discharge pressure and the other is valve plate geometry. As a result, we found that the spherical valve plate could get more stable fluid film thickness, maintain good efficiency for high pressure range than the other types.

  • PDF

The Splitting Point of Liquid Film between two Rotating Rollers (두 회전 롤러 사이의 유체 Splitting Point에 관한 연구)

  • Lim, Kyu-Jin;Shin, Joong-Soon
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.23 no.2
    • /
    • pp.129-141
    • /
    • 2005
  • The liquid film behavior between two rotating rollers has been analyzed for many years. Their contributions were, however, limited almost within the areas of polymer laminar flow in there. When the slip contact of two rotating rollers is used as a role of vehicle to distribute the liquid discharged on to each roller after splitting from the nip, there was few available relationship to control the roller speed and to design system. On this work it was possible to get out a certain relationship between the discharged film thickness ratio and the roller surface seeds without any help of pressure limit at the splitting point. The hydrodynamic analyzation of Newtonian liquid behavior around the point was well proved on some manipulative experiment. The thickness ratio increases along with the roll surface speed ratio increases. And the discharged volume flow rate ratio on each roller surface varies with square of the speed ratio. Both of these relationship have a decision factor also made up by the speed ratio.

  • PDF

Variation of Operating Clearance Depending on Cooling Methods of High-Speed Roller Bearings for Aerospace Applications (항공용 고속 롤러베어링의 냉각 방식에 따른 작동간극 변화)

  • Jisu Park
    • Tribology and Lubricants
    • /
    • v.39 no.4
    • /
    • pp.123-132
    • /
    • 2023
  • In this study, the expansion, stress, and operating clearance of bearing elements during operation are observed using the inner/outer ring temperature test data of a 3.0×106 DN-class roller bearing. The operating clearance characteristics of inner-/outer-ring cooling (IORC) bearings are compared to those of inner-ring cooling (IRC) bearings. For IRC bearings, the thermal expansion of the outer ring is the most important factor in clearance variation. As a result, the operating clearance is less than the initial clearance of 61 ㎛, and the operating clearance decreases to 0.5 ㎛ at 25,500 rpm. Conversely, the temperature of the outer ring of IORC bearings is lower than that of IRC bearings, so the operating clearance is kept smaller. When the coolant flow rate to the outer ring is approximately 1.5 to 2.0 L/min, the temperature difference between the inner and outer rings is minimized and the operating clearance is maintained at a significantly lower level than IRC bearings. Small operating clearances are expected to be effective in reducing cage slip and skid damage in roller bearings. The results and analysis procedures of this study can be utilized to design of bearing clearance, lubricant flow rate, and assembled interference in the early design stage of aerospace roller bearings.

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.