• 제목/요약/키워드: slip casting

검색결과 92건 처리시간 0.037초

Slip의 점도가 slip casting 및 casting 및 cordierite 소결체의 특성에 미치는 영향 (Effects of viscosities of slip on slip casting and properties of sintered bodies of cordierite)

  • 백용혁;장복기;곽효섭
    • 한국결정성장학회지
    • /
    • 제15권5호
    • /
    • pp.202-207
    • /
    • 2005
  • Kaolin과 규석 및 $Mg(OH)_2$등의 원료로 만들어진 slip을 casting 할 때 slip의 점도가 slip casting 속도와 소결체의 미세조직에 미치는 영향을 보면 slip-casting속도는 slip의 점도가 낮을 경우 감소하였으며 slip의 점도범위는 $3.0\~17.0\;cP$가 적당하였다. Slip의 점도를 조절하면 표면층, 표면 내부층, 중간층, 내면층의 미세조직을 비교적 균일하게 casting 할 수 있다 소성온도 $1350^{\circ}C$에서 시편의 구성광물은 cordierite 결정만으로 되어있었다.

가압-진공 하이브리드 주입성형에 의한 알루미나의 균질 성형 (Homogeneous Shape Forming of Alumina by Pressure-Vacuum Hybrid Slip Casting)

  • 조경식;송인범;김재
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.592-600
    • /
    • 2012
  • Conventional methods for preparing ceramic bodies, such as cold isostatic pressing, gypsum-mold slip casting, and filter pressing are not completely suitable for fabricating large and thick ceramic plates owing to disadvantages of these processes, such as the high cost of the equipment, the formation of density gradients, and differential shrinkage during drying. These problems can be avoided by employing a pressure-vacuum hybrid slip casting approach that considers not only by the compression of the aqueous slip in the casting room (pressure slip casting) but also the vacuum sucking of the dispersion medium (water) around the mold (vacuum slip casting). We prepared the alumina formed bodies by means of pressure-vacuum hybrid slip casting with stepwise pressure loading up to 0.5 MPa using a slip consisting of 40 vol% solid, 0.6 wt% APC, 1 wt% PEG, and 1 wt% PVA. After drying the green body at $30^{\circ}C$ and 80% RH, the green density of the alumina bodies was about 56% RD. The sintered density of an alumina plate created by means of sintering at $1650^{\circ}C$ for 4 h exceeded 99.8%.This method enabled us to fabricate a $110{\times}110{\times}20$ mm alumina plate without cracks and with a homogeneous density, thus demonstrating the possibility of extending the method to the fabrication of other ceramic products.

평판 강혼 주조용 연주기의 Slip Force 거동에 대하여 (Behavior of Slip Force in Continuous Flate Casting)

  • Si Young Kim
    • 수산해양기술연구
    • /
    • 제17권2호
    • /
    • pp.85-91
    • /
    • 1981
  • 평판 강괴를 연속적으로 주조할 경우에 초기주조 상태에서 Mold 내부의 Support bar 및 용강자중, 주조속도, 용강두께, 이를 지지하는 제어 Roller, 유압기구, 구동 Motor, 그리고 주조조직의 응고 등이 용강의 인발력을 유도하는 Pinch Roller와의 사이에서 동력학적 부평형을 일으켜 Slip 현상을 초래하므로 본 논문에서는 이상의 제요인들을 근거로 Slip 현상을 규명하는 식을 유도하고 강괴의 주조속도, 비중량, 두께의 변화에 대한 Slip Force 거동을 규명하였다. 그 결과 1. 본 논문의 해석식에 의하여 평판강괴 연속주조용 Pinch Roller의 적정압을 설계할 수 있다. 2. 비중량은 순수히 자중만 증가시키는 요인이며 Slip Force는 주조속도변화에 대해서 포물선적으로 증가한다. 3. 주조두께 및 비중량의 변화에 대한 Slip Force는 이에 비례하여 증가하나 특히 두께의 값이 소폭보다 대폭에서 그 변화 값이 크게 나타났다.

  • PDF

가압-진공 하이브리드 주입 성형에 의한 알루미나의 성형에 미치는 다단 가압의 영향 (Effect of Step Pressure on Shape Forming of Alumina by Pressure-Vacuum Hybrid Slip Casting)

  • 조경식;이현권;우병준
    • 한국세라믹학회지
    • /
    • 제50권2호
    • /
    • pp.142-148
    • /
    • 2013
  • Conventional cold isostatic pressing, slip casting, and filter pressing are not completely suitable for fabricating large plates because of disadvantages such as the high cost of equipment and formation of density gradient. These problems could be avoided by employing pressure-vacuum hybrid slip casting (PVHSC). In the PVHSC, the consolidation occurs not only by the compression of the slip in casting room, but also by vacuum sucking of the dispersion medium around the mold. We prepared the alumina bodies by the PVHSC in a static- or stepwise-pressure manner for loading up to 0.5 MPa using an aqueous slip. The green bodies were dried at $30^{\circ}C$ with 40 ~ 80% relative humidity. Under static pressure, casting induced a density gradient in the formed body, resulting in cracking and distortion after the firing. However, the stepwise pressure loading resulted in green bodies with homogeneous density, and the minimization of the appearance of those defects in final products. Desirable drying results were obtained from the cast bodies dried with 80% RH environment humidity. When sintered at $1650^{\circ}C$ for 4 h, the alumina plate made by stepwise-pressure casting reached full density (> 99.7% relative density).

슬립 캐스팅을 이용한 통기성 세라믹형의 쾌속 제작 (Rapid Tooling of Porous Ceramic Mold Using Slip Casting)

  • 정성일;정두수;임용관;정해도;조규갑
    • 한국정밀공학회지
    • /
    • 제16권5호통권98호
    • /
    • pp.98-103
    • /
    • 1999
  • The application field of porous mold is more and more expended. A mixture of alumina and cast iron is used for making porous mold using slip and vacuum casting method in this study. Slip casting is a process that slurry is poured into silicon rubber mold, dried in vacuum oven, debinded and sintered in furnace, In this procedure, slurry is composed of powder, binder, dispersion agent, and water. Vacuum casting is a technique for removing air bubbles existed in the slurry under vacuum condition. Since ceramics has a tendency of over-shrinkage after sintering, cast iron is used to compensate dimensional change. The results shows that sintering temperature has a great effect on characteristics of alumina-cast iron composite sintered parts. Finally ceramic-metal composite sintered mold can be used for aluminum alloy casting of shoe mold using this process.

  • PDF

Fabrication of Large-Size Alumina by Pressure-Vacuum Hybrid Slip Casting

  • Cho, Kyeong-Sik;Lee, Seung Yeul
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.396-401
    • /
    • 2013
  • The size of various alumina ceramics used in the semiconductor and display industries must be increased to increase the size of wafers and panels. In this research, large alumina ceramics were fabricated by pressure-vacuum hybrid slip casting (PVHSC) employing a commercial powder, followed by sintering in a furnace. In the framework of the PVHSC method, the consolidation occurs not only by compression of the slip in the casting room but also by suction of the dispersion medium from the casting room. When sintered at $1650^{\circ}C$ for 4 h, the fabricated large-size alumina ($1,550{\times}300{\times}30mm^3$) exhibited a dense microstructure corresponding to more than 99.2% of the theoretical density and a high purity of 99.79%. The flexural and compressive strengths of the alumina plate were greater than 340 MPa and 2,600 MPa, respectively.

In 계 저융점합금의 닥터 블레이드 테이프캐스팅 (Doctor Blade Tape Casting of In-based Low Melting Point Alloy)

  • 윤기병
    • 한국주조공학회지
    • /
    • 제35권3호
    • /
    • pp.62-66
    • /
    • 2015
  • Tape casting is an important forming operation used to prepare flat sheets in the various industries. In this study, Doctor Blade tape casting of In-based low melting point alloy was carried out. The purpose of this investigation was to determine the possibility of applying the Doctor Blade tape casting process to the manufacture of low melting point alloy sheets that can be used as thermal fusible parts of battery safety systems. In-based molten alloy that has a melting point of $95^{\circ}C$ was produced; it's viscosity was measured at various temperatures. The molten alloy was used as a slip in the caster of the Doctor Blade tape casting system. The effects of the molten alloy temperatures and carrier speeds on the produced sheet shape were observed. For the casting conditions of 1.5 cm slip height, $120^{\circ}C$ slip temperature, 0.05 mm blade gap and 60 m/min. carrier speed, an In-based alloy thin tape well shaped with 0.16 mm uniform thickness was continuously produced.

Aqueous Processing of Textured Silicon Nitride Ceramics by Slip Casting in a Strong Magnetic Field

  • Zhu, Xinwen;Uchikoshi, Tetsuo;Sakka, Yoshio
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.866-867
    • /
    • 2006
  • This work will report a highly textured ${\beta}-Si_3N_4$ ceramic by aqueous slip casting in a magnetic field and subsequent pressureless sintering, Effects of the sintering aids, polymer dispersant, pH and stirring time on the stability of the $Si_3N_4$ slurries were studied. The textured ${\beta}-Si_3N_4$ with 97 % relative density could be obtained by slip casting in a magnetic field of 12 T and subsequent sintering at $1800^{\circ}C$ for 1 h. The textured microstructure is featured by the alignment of c-axis of ${\beta}-Si_3N_4$ crystals perpendicular to the magnetic field, and the Lotgering orientation factor, f, is determined to be 0.8.

  • PDF

지르코니아 블록 폐기물을 이용한 싱글코어의 제조법 (Production of Single Core with Waste Zirconia Block)

  • 조준호;서정일;배원태
    • 대한치과기공학회지
    • /
    • 제35권1호
    • /
    • pp.57-64
    • /
    • 2013
  • Purpose: Waste parts of zirconia blocks and powders were remained after CAD/CAM process. In order to make these residual zirconia fit for practical use, zirconia single cores were produced by drain casting process. Methods: Remained zirconia blocks were reduced to powders with zirconia mortar, and screened with 180 mesh sieve. Zirconia slip was prepared from waste parts of zirconia by ball milling. Plaster molds for forming cores by slip casting were also prepared. Formed cores were removed from mold after partial drying. Dried cores were biscuit fired at $1,100^{\circ}C$ for 1hour. Biscuit fired cores were treated with tools to control the fitness and thickness. Finished cores were $2^{nd}$ fired at $1,500^{\circ}C$ for 1hour. Microstructure of cross section of core was observed by SEM. Results: When mill pot was filled with 100g of zirconia and alumina mixed powder, 300g of zirconia ball, and 180g of distilled water, the optimum slip for drain casting was obtained. Gypsum plaster for ceramic forming was more suitable then yellow stone plaster for casting process. SEM photograph showed the microstructure of fully dense with uniform grain size of zirconia and well dispersed alumina grains into the zirconia matrix. Conclusion: Zirconia single cores were produced by drain casting process. Drain casting is useful process to make these residual zirconia fit for practical use. Further study will be focused on the preparation of the bridge type cores by casting.