• Title/Summary/Keyword: sliding surface

Search Result 1,092, Processing Time 0.031 seconds

Fuzzy Logic Based Sliding Mode Control

  • Kim, Sung-Woo;Lee, Ju-Jang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.822-825
    • /
    • 1993
  • A fuzzy logic controller derived from the variable structure control (VSC) theory is designed. Unlike the conventional design of the fuzzy controller, we do not fuzzify the error and the rate of error, but fuzzify the sliding surface. After the fuzzy sliding surface is introduced, the fuzzy rules are defined based on the sliding control theory. It will be shown this sliding mode fuzzy controller is a kind of VSC that introduces the boundary layer in the switching surface and that the control input is continuously approximated in the layer. As a result we can guarantee the stability and the robustness by the help of VSC, which were difficult to insure in the past fuzzy controllers. Simulation results for the inverted pendulum will show the validity.

  • PDF

Minimum Time Regulation of DC-DC Converters in Damping Mode with an Optimal Adjusted Sliding Mode Controller

  • Jafarian, Mohammad Javad;Nazarzadeh, Jalal
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.769-777
    • /
    • 2012
  • In this paper, a new development in the time optimal control theory in sliding mode control systems for multi-quadrant buck converters with a variable load is presented. In general, the closed-loop time optimal control system is applied to multi-quadrant buck converters for output regulation, so that an optimal switching surface is obtained. Moreover, an adjusted optimal sliding mode controller is suggested which adjusts the controller parameters to give an optimal switching surface. In addition, a description of the transient response of the closed-loop system is proposed and used to damp any output or input disturbances in minimum time. Numerical simulations and experimental results are employed to demonstrate that the output regulation time and transient performances of dc/dc converters using the proposed technique are improved effectively when compared to the classical sliding mode control method.

Robust $H_{\infty}$ Control Using SVM (SVM을 이용한 강인한 $H_{\infty}$ 제어기 구성)

  • Yoon, Seong-Sik;Oh, Chang-Hoon;Kim, Min-Chan;Ahn, Ho-Kyun;Park, Seung-Kyu;Kwak, Gun-Pyong;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1656-1657
    • /
    • 2007
  • In this paper, a sliding mode controller with SVM sliding surface is proposed. In the conventional sliding mode control, the dynamic of sliding surface is not as same as nominal dynamic of original system. Therefore the aim of this paper is to design sliding surface without defining any additional dynamic state by using support vector machines. As a result, the proposed controller can have the same dynamic of nominal system controlled by $H_{\infty}$ controller.

  • PDF

Adaptive Time-delayed Control with Integral Sliding-mode Surface for Fast Convergence Rate of Robot Manipulator (로봇 머니퓰레이터에서의 수렴속도 향상을 위한 적분 슬라이딩 모드 기반 적응 시간 제어 기법)

  • Baek, Jae-Min;Kang, Min-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.307-312
    • /
    • 2021
  • This paper proposes an adaptive time-delayed control approach with the integral sliding-mode surface for the fast convergence rate of robot manipulators. Adaptive switching gain aims to guarantee the system stability in such a way as to suppress time-delayed estimation error in the proposed control approach. Moreover, it makes an effort to increase the convergence ability in reaching the phase. An integral sliding-mode surface is employed to achieve a fast convergence rate in the sliding phase. The stability of the proposed one is proved to be asymptotically stable in the Lyapunov stability. The efficiency of the proposed control approach is illustrated with a tutorial example in robot manipulator, which is compared to that of the existing control approach.

Discrete-Time Sliding Mode Controller Design for Scanner system (Scanner System을 위한 Discrete-Time Sliding Mode Controller 설계)

  • 이충우;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.172-172
    • /
    • 2000
  • In this paper, we propose a new discrete-time sliding mode controller for reference tracking. Stability of tracking error is analyzed. Design method of sliding surface for tracking control is proposed. Simulation and experimental results are included to show the effectiveness of the proposed method.

  • PDF

High Temperature Creep Behavior in Al-Mg(Zn)-Fe Alloys

  • Bae, Chang-Hwan;Lee, Ju-Hee;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.37-41
    • /
    • 2010
  • Creep tests were conducted under a condition of constant stress on two aluminum-based alloys containing particles: Al-5% Mg-0.25% Fe and Al-5% Zn-0.22% Fe. The role of grain boundary sliding was examined in the plane of the surface using a square grid printed on the surface by carbon deposition and perpendicular to the surface using two-beam interferometry. Estimates of the contribution of grain boundary sliding to the total strain, $\varepsilon_{gbs}/\varepsilon_t$ reveal two trends; (i) the sliding contribution is consistently higher in the Al-Mg-Fe alloy, and (ii) the sliding contribution is essentially independent of strain in the Al-Mg-Fe alloy, but it shows a significant decrease with increasing strain in the Al-Zn-Fe alloy. Sliding is inhibited by the presence of particles and its contributions to the total strain are low. This inhibition is attributed to the interaction between the grain boundary dislocations responsible for sliding and particles in the boundaries.

Investigations on Relationship between Fractal Dimension and 3-D Surfaces Topography of C.G. Irons under Dry Sliding

  • Yongzhen, Zhang;Gesen, Sun;Lemin, Sun;Weimin, Liu;Bao, Shangguan;Yue, Chen
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.253-254
    • /
    • 2002
  • Based on 3-D surface morphology measurements of C.G. irons, the fractal analyses were made on relationship between dry sliding surface morphology and the fractal dimension. It is revealed that the values of fractal dimensions ($D_f$) of sliding surfaces are in the range between 1-2, which are closely related to the surface morphologies. With the increase in depths of grooves or pits, the $D_f$ values increase. At the same time, the increases in densities of the grooves also cause the $D_f$ values to increase. At last, relationship among $D_f$ and friction coefficient as well as wear rate is discussed.

  • PDF

A New Improved Integral Variable Structure Controller for Uncertain Linear Systems (불확실 선형 시스템을 위한 새로운 개선된 적분 가변구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.4
    • /
    • pp.177-183
    • /
    • 2001
  • In this paper, a new variable structure controller is designed for the tracker control of uncertain general plants so that the output of plants can controlled to a given arbitrary point in state space. By using the error between the steady state value of the output and the given reference, the sliding surface is defined, in advance, the surface from an initial state to the given reference without any reaching phase. A corresponding control input to satisfy the existence condition of the sliding mode is suggested to control the output on the predefined surface. Therefore the output controlled by the proposed controller is completely robust and identical to that of the sliding surface. Through an example, the usefulness is verified.

  • PDF

Robust control using the sliding mode observer in the presence of unmatched uncertainties (비정합조건 하의 슬라이딩 모드 관측기를 이용한 강인 제어)

  • 한상철;박인규;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.334-334
    • /
    • 2000
  • In this paper, sliding mode observer design principles based on the equivalent control approach are discussed for the systems which may not satisfy the matching conditions. We propose a new approach for designing a sliding observer and the proof of the stability of the state reconstruction error system for time-invariant systems using the Lyapunov method. The reaching time to the sliding surface, the sliding dynamics of the system, the stability of the reconstruction error system via Lyapunov method, sufficient conditions for the existence of the sliding mode are studied.

  • PDF

Application of robust fuzzy sliding-mode controller with fuzzy moving sliding surfaces for earthquake-excited structures

  • Alli, Hasan;Yakut, Oguz
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.517-544
    • /
    • 2007
  • This study shows a fuzzy tuning scheme to fuzzy sliding mode controller (FSMC) for seismic isolation of earthquake-excited structures. The sliding surface can rotate in the phase plane in such a direction that the seismic isolation can be improved. Since ideal sliding mode control requires very fast switch on the input, which can not be provided by real actuators, some modifications to the conventional sliding-mode controller have been proposed based on fuzzy logic. A superior control performance has been obtained with FSMC to deal with problems of uncertainty, imprecision and time delay. Furthermore, using the fuzzy moving sliding surface, the excellent system response is obtained if comparing with the conventional sliding mode controller (SMC), as well as reducing chattering effect. For simulation validation of the proposed seismic response control, 16-floor tall building has been considered. Simulations for six different seismic events, Elcentro (1940), Hyogoken (1995), Northridge (1994), Takochi-oki (1968), the east-west acceleration component of D$\ddot{u}$zce and Bolu records of 1999 D$\ddot{u}$zce-Bolu earthquake in Turkey, have been performed for assessing the effectiveness of the proposed control approach. Then, the simulations have been presented with figures and tables. As a result, the performance of the proposed controller has been quite remarkable, compared with that of conventional SMC.