• Title/Summary/Keyword: sliding model

Search Result 986, Processing Time 0.03 seconds

Sliding Mode Controller Design for Biped Robot (이족보행로봇을 위한 슬라이딩 제어기 설계)

  • Park, In-Gyu;Kim, Jin-Geol;Kim, Ki-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.137-146
    • /
    • 2001
  • A robust controller with the sliding mode is proposed for stable dynamic walking of the biped robot in this paper. For the robot system to be controlled, which is modeled as 14 DOF rigid bodies by the method of multi-body dynamics, the joint angle trajectories are determined by the velocity transformation matrix. Also Hertz force model and Hysteresis damping element are utilized for the ground reaction and impact forces during the contact with the ground. The biped robot system becomes unstable since those forces contain highly confused noise components and some discontinuity, and modeling uncertainties such as parameter inaccuracies. The sliding mode control is applied to solve above problems. Under the assumption of the bounded estimation errors on the unknown parameters, the proposed controller provides a successful way to achieve the stability and good performance in spite of the presence of modeling imprecisions of uncertainties.

  • PDF

On-Line Sliding Mode Controller Design from a Single Closed Loop Test (단일 폐루프 테스트를 통한 온라인 슬라이딩 모드 제어기 설계)

  • Bae Jun-hyung;Lim Dong-kyun;Suh Byung-sulh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • The calculation of parameters of a process model is modified to find better sliding mode controller for a process. A design method by Camacho has such problems as chattering and overshoot due to the Taylor the approximation errors for the time delay term of the first order model. In this paper, a new design technique for a sliding mode controller is proposed by introducing the modified Pade approximation considering the weight factor. With the proposed method, the process response can be directly used to estimate the system parameters without any numerical processing.

A Study on the Model of an HSDI Common-Rail Injector and the Estimation of Needle Lift (HSDI Common-Rail 인젝터 모델링 및 니들 변위 추정에 관한 연구)

  • 성경훈;박승범;선우명호;나형규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.59-66
    • /
    • 2002
  • This paper presents the process of the needle lift estimation ova common-rail injector fur HSDI(High Speed Direct Injection) diesel engines. A nonlinear mathematical model of dynamic behaviors of common-rail injector is established at first. Based on the mathematical model of the common-rail injector, the methodology of estimating the injector needle lift is introduced. A sliding mode observer is applied to overcome the model uncertainties. The common-rail injector model and the needle lift estimator are verified by simulations and experiments. The simulation and experimental results indicate that the model outputs are in a good agreement with experimental data, and the proposed nonlinear sliding observer can effectively estimate the needle lift.

An Application of Variable Structure Model Following Adaptive Control Using Time-Varying Sliding Regime to Robot Manipulator with Vertical 3 links (수직3관절 로보트 매니풀레이터에 대하여 시변슬라이딩레짐을 사용한 가변구조 모델추종 적응제어의 응용)

  • Kim, Joong-Wan;Kang, Dae-Gi;Kim, Byoung-Oh;Oh, Hyun-Seong;Jung, Hee-Kyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.158-167
    • /
    • 1994
  • The design concept of varaiable structure control is useful not only to stochasic systems but also to adaptive control systems. The Dynamic equation of vertical three linkage robot was derived. And it was simplyfied according to the scheme of control strategy. And we specify the form of model. Thereafter the error dynamic equation was derived between the real state of the plant and state of the model. Some simulations were performed to control robot manipulator applying the methodology of the variable structure model following adaptive control.

  • PDF

Evaluation of Shear Load Carrying Capacity of Lateral Supporting Concrete Block for Sliding Slab Track Considering Construction Joint (타설 경계면을 고려한 슬라이딩 궤도 횡방향 지지 콘크리트 블록의 전단 내하력 평가)

  • Lee, Seong-Cheol;Jang, Seung Yup;Lee, Kyoung-Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.55-61
    • /
    • 2017
  • Recently several researches have been conducted to develop sliding track system in which friction between concrete track and bridge slab has been reduced. This paper investigated shear load carrying capacity of lateral supporting concrete block which should be implemented to resist lateral load due to train in sliding track system. In order to evaluate shear load carrying capacity of lateral supporting concrete block, analytical model has been developed considering concrete friction and rebar dowel action along construction joint. The proposed model predicted test results on the shear load carrying capacity from literature conservatively by 13~23% because effect of aggregate interlock along crack surface was neglected. Since construction joint status is ambiguous on construction site, it can be concluded that the proposed model can be used for reasonable design of lateral supporting concrete block. Based on the proposed model, design proposal for lateral supporting concrete block has been established.

A Design of Model Predictive Control and Nonlinear Disturbance Observer-based Backstepping Sliding Mode Control for Terrain Following (지형 추종을 위한 모델 예측제어와 비선형 외란 관측기를 이용한 백스테핑 슬라이딩 모드 제어기법 설계)

  • Dongwoo Lee;Kyungwoo Hong;Chulsoo Lim;Hyochoong Bang;Dongju Lim;Daesung Park;Kihoon Song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.495-506
    • /
    • 2024
  • In this study, we propose the terrain following algorithm using model predictive control and nonlinear disturbance observer-based backstepping sliding mode controller for an aircraft system. Terrain following is important for military missions because it helps the aircraft avoid detection by the enemy radar. The model predictive control is used to replace the generating trajectory and guidance with the flight path angle constraint. In addition, the aircraft is affected to the parameter uncertainty and unknown disturbance such as wind near the mountainous terrain. Therefore, we suggest the nonlinear disturbance-based backstepping sliding mode control method for the aircraft that has highly nonlinearity to enhance flight path angle tracking performance. Through the numerical simulation, the proposed method showed the better tracking performance than the traditional backstepping method. Furthermore, the proposed method presented the terrain following maneuver maintaining the desired altitude.

A Design Method of Sliding Model Control System Using Parallel Ladder Network of Dynamic Compensators

  • Ohtsuka, Hirofumi;Iwai, Zenta;Mizumoto, Ikuro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1424-1429
    • /
    • 2003
  • In this paper, the design method of sliding mode control (SMC) system for SISO linear system is discussed. First, we consider the similarity between the design method of sliding mode hyper plane using the strict positive realness and the characteristics of zeros of feedback system and the design method of simple adaptive control. Based on such a consideration, we propose the new design method of SMC system using parallel dynamic compensator. As a result, SMC system can be constructed only with the derivative of output signal for controlled plant. The performance of SMC system designed by proposed method is confirmed through the numerical example.

  • PDF

A Nonlinear Controller of a Two-Wheeled Welding Mobile Robot Track ing Smooth-Curved Welding Path Using Sliding Mode Control

  • Chung, Tan Lam;Bui, Trong Hieu;Suh, Jin-Ho;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1418-1423
    • /
    • 2003
  • In this paper, a nonlinear controller based on sliding mode control is applied to a two -wheeled Welding Mobile Robot (WMR) to track a smooth-curved welding path at a constant velocity of the welding point. T he mobile robot is considered in terms of dynamics model in Cartesian coordinates and its parameters are exactly known . To obtain the controller, the tracking errors are defined, and the two sliding surfaces are chosen to guarantee that the errors converge to zero asymptotically. Two cases are to be considered: fixed torch and controllable torch. In addition, a simple way of measuring the errors is introduced using two potentiometers. The simulation results are included to illustrate the performance of the control law.

  • PDF

Error Reduction of Sliding Mode Control Using Sigmoid-Type Nonlinear Interpolation in the Boundary Layer

  • Kim, Yoo-K.;Jeon, Gi-J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1810-1815
    • /
    • 2003
  • Sliding mode control with nonlinear interpolation in the boundary layer is proposed. A modified sigmoid function is used for nonlinear interpolation in the boundary layer and its parameter is tuned by a fuzzy logic controller. The fuzzy logic controller that takes the distance between the system state and the sliding surface as its input guides the choice of parameter of the modified sigmoid function and the parameter is on-line tuned. Owing to the decreased thickness, the proposed method has better tracking performance than the conventional linear interpolation method. To demonstrate its performance, the proposed control algorithm is applied to a simple nonlinear system model.

  • PDF