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Abstract: In this paper, a nonlinear controller based on sliding mode control is applied to a two -wheeled Welding Mobile Robot 
(WMR) to track a smooth-curved welding path at a constant velocity of the welding point. T he mobile robot is considered in terms of 
dynamics model in Cartesian coordinates and its parameters are exactly known . To obtain the controller, the tracking errors are 
defined, and the two sliding surfaces are chosen to guarantee that the errors converge to zero asymptotically. Two cases are to be 
considered: fixed torch and controllable torch. In addition, a simple way of measuring the errors is introduced using two 
potentiometers. The simulation results are included to illustrate the performance of the control law.  
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1. INTRODUCTION 
  

Welding automation has been widely u sed in all types of 
manufacturing, and one of th e most complex application s is 
welding systems based on autonomous robots. Some special 
welding robots can provide several benefits in certain welding 
applications. Among them , welding mobile robot used in line 
welding application can generates the perfect  movements at a 
certain travel speed, which makes it possible to produce a 
consistent weld penetration and weld strength. 

In practice, some various robotic welding systems have 
been developed recently. Kim et al., 2000, developed a three  
dimen sional laser vision system for intelligent shipyard 
welding robot to detect the welding position and to recognize 
the 3D shape of the welding environments [9]; Jeon, 2001, 
presented the seam tracking and motion control for two-
wheeled welding mobile robot of lattice type welding; the 
control is separated into three driving motions: straight 
locomotion, turning locomotion, and torch slider control [10]. 
Kam, 2001, proposed a control algorithm based on “trial and 
error” method for straight welding using body positioning 
sensors and seam tracking sensor [11]. Both of controllers 
proposed by Jeon and Kam have been successfully applied to 
the practiced field. Ibanez I. et al., 2002, developed a 3D 
visual system with three cameras for positioning welding 
mobile robots so-calle d UNSHADES-1  system , which is a full 
controlled system that computes the position of the welding 
point [8]. T. H. Bui et al., 2003, proposed a simple nonlinear 
controller for two-wheeled welding mobile robot tracking a 
smooth-curved welding path using Lyapunov function 
candidate [12].    

On the other hand, there are several works on adaptive and 
sliding mode control theory for tracking control of mobile 
robots in literatures, especially, the mobile robots are 
considered under the model uncertainties and disturbances.  
Fierro, 1995, developed a combined kinematic and torque 
control law using backstepping approach and asymptotic 
stability is guaranteed by Lyapunov theory which can be 
applied to the three basic nonholonomic navigation: tracking a 
reference trajectory, path following and stabilization about a 
desired posture [3]. Jung-Min Yang et al., 1998, proposed a 
new sliding mode control law which is robust against initial 
condition errors, measurement disturbances and noise in the 
sensor data to asymptotically stabilize to a desired trajectory 
by means of the computed-torque method [4]. T. Fukao, 2000, 

proposed the integration of a kinematic controller and a torque 
controller for the dynamic model of a nonholonomic mobile 
robot. In the design, a kinematics adaptive tracking controller 
is proposed. Then a torque adaptive controller with unknown 
parameters is derived using the kinematic controller [7].  Dong 
Kyoung Chwa et al., 2002, proposed a new sliding mode 
control method for trajectory tracking of nonholonomic 
wheeled mobile robots presented in  two-dimensional polar 
coordinates in the presence of the external disturbances [1]; 
additionally, the controller shown the better effectiveness in 
the comparison with one in [4] in terms of the sensitivity to 
the parameters of sliding surface. 

 In this paper, a nonlinear controller using sliding mode 
control is applied to two-wheeled welding mobile robot to 
track a smooth-curved welding path. To design a tracking 
controller, the errors are defined between the welding point on 
torch and the reference point moving at a specified constant 
welding speed on welding path. There are two cases of 
controller: fixed torch controller and controllable torch 
controller. T he two sliding surfaces are chosen to make the 
errors to approach zeros as reasonable as desired for practical 
application. The control law is extracted from the stable 
conditions respectively. The controllable torch controller gives 
much more performance in comparison with the other. In 
addition, a simple way for sensing the errors using 
potentiometers is introduced to realize the above controller.  
The simulation results have been done to show the 
effectiveness of the proposed controller. 
 

2. DYNAMIC MODEL OF WMR 
 

In this section, the dynamic of two-wheeled welding 
mobile robot is considered with the nonholonomic constraints 
in relation with its coordinates and the reference welding path. 

It is observable that the welding point is away from the 
WMR’s center; consequently, that property makes tracking 
errors slow to convergence. Therefore, the WMR used in this 
paper is of two -wheel mobile robot with some modifications 
on mechanical structure for welding application (Fig. 1), rather, 
there are three motions in this mobile robot: two driving 
wheels and one torch slider. With the motion of the torch slider, 
the robot can reach to the reference welding path faster. 
Therefore, two cases are to be considered: controllers with and 
without torch slider in the controller design.  
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Fig. 1 WMR configuration 

 
The model of two-wheele d welding mobile robot is shown 

in Fig. 2. The posture of the mobile robot can be described by 
three generalized coordinates: 

 
[ ]Tyxq φ=  

where, )y,x(  : Cartesian coordinates of the WMR’s center 
       φ   : heading angle of the WMR   
 
Also it is chosen the internal state variables as follows 

 

[ ]Tvz ω=  
 
We assume that the wheels roll and do not slip, that is, the 

robot can only move in the direction normal to the axis of the 
driving wheels.  Analytically, the mobile base satisfies the 
conditions as following [7] 

 
0sinxcosy =− φφ &&  

 
where )y,x(C  is the coordinates of the WMR’s center. 
The constraint equations can be written in matrix form: 

 
0q)q(A =&                    (1) 

 
As the result, the kinematic model under the nonholonomic 

constraints (1) can be derived as follows: 
 

z)q(Sq =&                    (2) 
 

where  )q(S  is a )mn(n −x full rank matrix satisfying 

0)q(A)q(S TT = . 
Moreover, the dynamic equations of the mechanical system 

under nonholonomic constraints (1) can be described by 
Euler-Lagrange formulation [4]  

 

λτ )q(A)q(E)q,q(Vq)q(M T−=+ &&&        (3) 
 

where, 
nxnR)q(M ∈  : symmetric and positive definite inertia matrix  

nxnR)q,q(V ∈& : centripetal and coriolis matrix 
nxrR)q(E ∈  : input transformation matrix 
mxnR)q(A ∈  : matrix related with nonholonomic constraints 

rR∈τ    : a control input vector 
mR∈λ   : a constraint force vector 

 
For simplicity of analysis, we assume that mnr −=  

From (2) and (3), we have the nonholonomic mobile robot 
platform’s system dynamics in which the constraint (1) is 
embedded and take into account disturbances can be derived 
by the result of [14] 

 





=++
=

ττ d)z,q(Gz)q(H
z)q(Sq

&

&
         (4) 

 
where, 
 

)mn()mn(TT1T RMSMSS)ES()q(H −−− ∈= x  
m)mn(T1T R)VzSM(S)ES()z,q(G x−− ∈+= &  

m)mn(R x−∈τ  is the input torque vector. In this application, it 
is torque vector applied t o driving wheels. 
It is assumed that the disturbance vector can be expressed as a 
multiplier of matrix )q(H , or it satisfies the matching 
condition with a known boundary: 

 
f)q(Hd =τ  

[ ]T21 f,ff = ,  m
22

m
11 ff,ff ≤≤  

 

where m
1f  and m

2f  are upper bounds of disturbances. 
The model of the WMR is shown in Fig. 2. It is modeled 

including the motion of welding torch into system dynamics 
so that the welding point on torch can track the reference path 
at specified constant welding speed. 

First, the kinematic equations of the WMR in the Cartesian 
space corresponding to (2) are set up as following 
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where )y,x(C  is position variables of WMR’s center point, 
φ  is the orientation angle of the WMR, v  and ω  are the 
linear and angular velocities of the WMR at its center point. 

The relationship between ,v ω  and the angular velocities 
of two driving wheels is the following 
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where lwrw,ωω  represent the angular velocities of right and 

left wheels, b  is distance from WMR’s center point to the 
driving wheel, r  is the radius of wheel.  

Second, the welding point )y,x(W ww  on torch and its 
orientation angle wφ can be derived from WMR’s center 

)y,x(C [12] 
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Fig. 2 Scheme for deriving WMR kinematic equations 

 
where l  is the length of torch. The derivative of (8) yields 
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It is assumed that  a reference point )y,x(R rr  on the 

reference path moving at the constant velocity of rv  with the 
orientation angle rφ . The dynamic equation is shown below 
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where rφ  is defined as the angle between rv  and x  axis, 

and rω  is the rate of angular change of rv . 
 

3. SLIDING MODE CONTROLLER DESIGN  
  

The scheme of errors are shown in Fig. 2, and the tracking 

errors T
321 ]e,e,e[e =  are defined as following [12] 
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The first derivative of errors yields 
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Also, the second derivative, 
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(12) 

We will design a controller to achieve 0ei →  when ∞→t ; 
in other words, the welding point W tracks to the reference 
point R  at a desired velocity of welding. 
 
3.1. The case of fixed torch 

To design the controller of fixed torch, the sliding surface 
[ ]T21 SSS =  is defined as follows 

 










+
++

=







=

333

212111

2

1

eke
e)esgn(keke

S
S

S
&

&
      (13) 

 
where 1k , 2k  and 3k  are positive values and sgn(.) is the 
sign function. When reached the sliding surface, the system 
dynamics satisfies the differential equation obtained from 

0s = , namely 
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The first row of (14) is considered,  when  1e  becomes 

positive, 1e&  becomes negative and vice versa. Thus, the 

equilibrium point of 1e  converges to zero, which, in turn, 

leads to the asymptotic convergence of 2e  to zero. 

Similarly, the second row, 3e  also converges to zero 
As a feedback linearization of the system, the control input 

is defined by computed-torque method [4] as follows 
 

τ=++ u)q(H)z,q(Gz)q(H &         (15) 
 

where [ ]T21 uuu = is a control law which makes error 
dynamic s. Substitution of the proposed control law (15) into 
the dynamic equation (4) yields [4] 

 
  uzfz r +=+ &&  

fuzz r −=−⇒ &&                  (16) 
 
The following procedure is to design a control law u  

which make the sliding mode stable.  From (12 ) & (13) , we have 
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In this application, the speed of the welding point is 

constant, or 0vr =& , (17) is rewritten as follows 
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For the simplicity, (18) is modified as below 
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Substituting (13) and (16) into (19), it is reduced to following 
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Let the control law [ ]T21 uuu = be 
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   (21) 

 
where iQ  and iP , 2,1=i  are constant positive values.  
Equation (20) becomes 
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where, 
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If we choose m
iii fP,0Q ≥≥ , 2,1i = , then V& to be 

negative semi-definite, and the control law u  stabilizes 
sliding surfaces (14). 

 
3.2 The case of controllable torch 

To design the controller of controllable torch, the sliding 

surface [ ]T21 SSS = is defined as follows  
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Similarly, the control law u  can be derived as 
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We have to design one more controller for torch as follows 

Let the Lyapunov function candidate be 
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To achieve 0V ≤& , we choose control law for the torch 
 

ω12223r eekesinvl −+=&            (27) 
 

4. MEASUREMENT OF THE ERRORS  
 
In this paper, the controller is derived from  measurement of 

the tracking errors 321 e,e,e in Eq.  (21). T he errors 
measurement scheme is described in Fig. 2: the t wo rollers are 
placed at 1O  and 2O . The roller at 1O  is used to specify 
the two errors 1e and 2e and the other, error 3e . The 

distance between the two rollers 21OO  is chosen according 
to the curve radius of the reference welding path at the contact 

)y,x(R rr  such as .OO//v 21r
r

 The rollers’ diameters are 
chosen small enough to overcome the friction force. 
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Fig. 3 Scheme for measuring the errors 

 
From Fig. 3, we have the relationships 
 









−∠=
−−−=

−=

2/)OO,CO(e
)ecos1(r)ll(e

esinre

2113

3ss2

3s1

π
         (28) 

 
where sr  is the radius of roller, and sl  is the length of 
sensor. And the two potentiometers are used for measur ing the 
errors: one linear potentiometer for measuring )ll( s −  and 

one rotating potentiometer, the angular between X coordinate 
of WMR and rv

r
. 
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5. SIMULATION RESULTS AND DISCUSSIONS 
  
To verify the effectiveness of the proposed controller, 

simulations have been done with controller (21) with a defined 
reference smooth-curved welding path (Fig. 4). In the case of 
fixed torch, the design parameters of the sliding surfaces are 

7.0k,5.0k,5.0k 321 === and the parameters of the control 

law, 6.0P1 = , 2P2 =  and 10Q1 = , 35.0Q2 = , and in the 
case of controllable torch, 2k1 = 5k3 = , 2k22 = ; 

6.0P1 =  and 2P2 = ; 10Q1 =  and 1Q2 = . The input 
disturbances are chosen to be random noises of mean 0.5 and 
the upper bounds of disturbances are assumed as  

N5.0ff 2m1m == . The WMR’s parameters and the initial 
values are given in table 1 and table 2. The welding speed is 
7.5 mm/s. 

 
Table 1. The numerical values for simulation 

 
Parameter Value Comment 

b  0.105m displacement from driving 
wheel to the axis of symmetry 

l  0.24m length of torch 
r  0.025m radius of wheel 

cm  8.5kg mass of body 

wm  0.3kg mass of wheel and motor 
 

Table 2. The initial values for simulation 
 

Parameter Value Comment 

rx  0.28m  x coordinate of reference 

wx  0.27m x coordinate of welding point 

ry  0.4m y coordinate of reference 

wy  0.39m y coordinate of welding point 

φ r 0deg angle of reference 

wφ  15deg heading angle of welding point 
v  0 mm/ linear velocity of WMR 
ω  0 rad/s angular velocity of WMR 

 
 
y

(0.280,0.400)

(0.621,0.591)

(0.812,0.666)

(0.865,0.719)

(1.015,0.910)
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(0.730,0.854)

(0.677,0.801)

(0.621,0.666)

(0.430,0.591)

(0.430,0.400)

R 
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0.
19

1

R = 0.191

R 
= 

0.
19

1

x  
Fig. 4 The reference welding path 

 
Simulation results are given through Figs. 5-10. In Figs. 5 and 
6, it can be seen that the errors go to zeros after 20 seconds in 
the case of fixed torch; but, only 2 seconds in the case of 
controllable torch. Therefore, the simulations are only 
presented in the case of torch control. The errors are almost 
zeros as WMR passes through the curved line. The torch 

length is shown in Fig. 9 for the first 5 seconds. The torch 
length rises to the stable value of about 248mm, and there are 
some errors as WMR passes through the curve. The posture 
and the welding trajectory are shown in Figs. 10. 
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    Fig. 5 Tracking errors without torch control (20s) 
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     Fig. 6 Tracking errors with torch control (5s) 
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     Fig. 7 Linear velocity of WMR’s center (5s) 
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     Fig. 8 Angular velocity of WMR’s center (5s) 
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    Fig. 9 Torch length 
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 Fig. 10 WMR’s movement tracking reference welding path  

 
From the simulation results, we can conclude as follows: 
- The controller of controllable torch give much more 
performance in comparison with the other: (1) the time 
convergence reduces to 2 seconds, (2) the system is less 
sensitive to the parameters; particularly, (3) the convergence 
of 2e is fast enough. 
- The chattering phenomena, as nature of this control, have to 
be eliminated for the implementation to practiced welding 
mobile robot. And the controller can be used for tracking any 
smooth curved line with acceptable small errors.  This problem 
would be  considered in the future work.  

 
6. CONCLUSIONS 

  
A simple nonlinear controller based on sliding mode 

control has been introduced to enhance the tracking 
performances of WMR. The controllers were designed in two 
cases: fixed torch controller and controllable torch. To design 
the tracking controller s, an error configuration is defined and 
the two sliding sur faces are chosen to drive the errors to zeros 
as reasonable as desired. Also, a simple way of measuring the 
errors for deriving the control law is proposed. The simulation 
results show that the controller is possible and implemented in 
the practiced field in the future. It can be concluded that the 
controller with torch control gives the much more 
performance than the other.       
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