• Title/Summary/Keyword: sliding mode controller

Search Result 933, Processing Time 0.044 seconds

Robust Control of Pressure Control System Using Direct Drive Valve (DDV를 이용한 압력 제어시스템의 강인제어)

  • Lee Chang-Don;Park Sung-Hwan;Lee Jin-Kul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1077-1082
    • /
    • 2005
  • In this paper, it is proposed that the method for constituting pressure control system controlled by Direct Drive Valve (DDV). The DDV has a pressure-feedback-loop itself. It can eliminate non-linearity and uncertainty oi hydraulic system such as uncertain discharge coefficient and change of bulk-modulus. However, the internal feedback-loop can not compensate them perfectly. And fixed gain of the DDV's internal feedback-loop is not proper to apply it through wide pressure range. The steady state error and nonlinear characteristic of transient behaviour is observed in the experiment. So another controller is needed for the desirable performance of the system. To compose the controller, the pressure control system controlled by DDV is modeled mathematically and the parameters of the model are identified using signal-compression method. Then sliding mode controller is designed based on mathematical model. Desirable performance of the pressure control system controlled by DDV is obtained.

Unified Chassis Control for Improvement of Vehicle Lateral Stability (차량 횡방향 안정성 향상을 위한 통합섀시 제어)

  • Cho, Wan-Ki;Yi, Kyoung-Su;Yoon, Jang-Yeol
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1126-1131
    • /
    • 2007
  • This paper presents unified chassis control (UCC) to improve the vehicle lateral stability. The unified chassis control implies combined control of active front steering (AFS), electronic stability control (ESC) and continuous damping control (CDC). A direct yaw moment controller based on a 2-D bicycle model is designed by using sliding mode control law. A direct roll moment controller based on a 2-D roll model is designed. The computed direct yaw moment and the direct roll moment are generated by AFS, ESP and CDC control modules respectively. A control authority of the AFS and the ESC is determined by tire slip angle. Computer simulation is conducted to evaluate the proposed integrated chassis controller by using the Matlab, simulink and the validated vehicle simulator. From the simulation results, it is shown that the proposed unified chassis control can provide with improved performance over the modular chassis control.

  • PDF

Hybrid Control of 5-Link Biped Robot Using a Wavelet Neural Network (웨이블릿 신경회로망을 이용한 5링크 이족로봇의 하이브리드 제어)

  • Kim, Chul-Ha;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2717-2719
    • /
    • 2005
  • Generally, biped walking is difficult to control because a biped robot is a nonlinear system with various uncertainties. In this paper, we propose a hybrid control system to improve the efficiency of position tracking performance of biped locomotion. In our control system, the wavelet neural network (WNN) based on Sliding mode controller is used as a main controller which estimates a biped robot model, and the compensated controller is proposed to compensate the estimation error. A WNN is utilized to estimate uncertain and nonlinear system parameters, where the weights of WNN are trained by adaptive laws that are induced from the Lyapunov stability theorem. Finally, the effectiveness of the proposed control system is verified through computer simulations.

  • PDF

Attitude SCAS Design for 40% Scaled Smart UAV (40% 축소형 스마트 무인기 비행제어기 설계)

  • Lee, Jang-Ho;Hwang, Tai-Won;Choi, Ji-Young;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The control design for attitude and yaw rate of 40 % scaled SMART UA Vhas been performed. Analytic selection method for a control gain is proposed to meet the design specification of desired time response considering stability margin. The sliding mode attitude controller is also proposed and compared with the simulation results of a linear controller. Additionally, a velocity and height tracking controller is devised to prepar for the flight test.

  • PDF

Study for the Controller Design of a Direct Drive Servo Valve (직접구동형 서보밸브의 제어기 설계에 관한 연구)

  • 이성래;김종열;김치붕
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.136-136
    • /
    • 2000
  • The direct drive servo valve(DDV) is composed of a DC rotor, link, valve spool and displacement sensor(LVDT) where the spool is directly coupled to the DC motor through the link. Since the DDV is a kind of one-stage valve, the robust controller is required to overcome the flow force effect on the spool motion. The mathematical equations are derived and the stability, accuracy and response speed of a DDV are investigated analytically using a linearized system block diagram. Proportional control, PID control. Time-Delay control, Sliding Mode control, and Proportional control using the load pressure are applied to DDV to find which one shows the best control performance. The digital computer simulation results show that the proportional control using the load pressure satisfies the design requirement of response speed and steady state error regardless of the variation of load pressure,

  • PDF

HYBRID PID FLC using sliding Mode (슬라이딩 모드를 이용한 HYBRID PID형 퍼지제어기)

  • Moon, Jun-Ho;Cho, Jong-Hoon;Oh, Kwang-Hyun;Kim, Tae-Un;Nam, Moon-Hyen
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.992-994
    • /
    • 1995
  • FLC has a good performance for complication system or unknown model by using human linguistic method but many part control design are based on expert knowledge or trial-error method and it is difficult to prove stability and robustness of controller. In this paper we improve this problem by setting fuzzy rules by dividing phase plane of error and rate of error change by switching surface. We can guarantee the stability in nonlinear system, and also in fuzzy PID type controller the complexity of controller design is increased by increasing the number of input variables and defining more range of operation if we want performance of more specific rules, thus we need to fine the method to decrease the number of control rules used in FLC design. In this paper the algorithm is validated by simulation using conventional FLC and proposed method.

  • PDF

Robust Tracking Control of Nonholonomic Systems (비홀로노믹 시스템을 위한 견실 추종 제어)

  • Yang Jung-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.31-37
    • /
    • 2003
  • A robust tracking control for nonholonomic dynamic systems is proposed in this paper. Since nonholonomic dynamic systems have constraints imposed on motions that are not integrable, i.e., the constraints cannot be written as time derivatives of some functions of generalized coordinates, advanced techniques are needed for their control. It is shown that if the state of nonholonomic systems is mapped into a bounded space by a coordinate transformation, a robust controller for dynamic models of nonholonomic systems with input disturbances can be designed using sliding mode control. Stability and robustness of the proposed controller are proved in the Lyapunov sense. Numerical simulations on the trajectory tracking of a two-wheeled mobile robot are conducted to validate the effectiveness of the proposed controller.

Robust output feedback control of LTI system using estimated output derivatives (출력 미분값의 추정에 의한 선형 시불변 시스템의 로버스트 출력 궤환 제어)

  • Lee, Gun-Bok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.273-282
    • /
    • 1996
  • This work is conceded with the estimation of output derivatives and their use for the design of robust controller for linear systems with system uncertainties due to modeling errors and disturbances. It is assumed that a nominal transfer function model and quantitative bounds for system uncertainties and known. The developed control schemes are shown to achieve regulation of the system output and ensures boundedness of the system states without imposing any structural conditions on system uncertainties and disturbances. Output derivative estimation is first conducted through restructuring of the plant in a specific parameterization. They are utilized for constructing robust nonlinear high-gain feedback controller of a SMC(Sliding Mode Control)type. The performances of the developed controller are evaluated and shown to be effective and useful through simulation study.

  • PDF

Design of Fuzzy Logic Servo Controller Based on Variable Structure Control (가변구조 개념을 이용한 서보용 퍼지제어기의 설계)

  • 박태홍;배상욱;김성호;박기상;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.809-818
    • /
    • 1994
  • In this paper , the author proposed FLVSC (Fuzzy Logic Variable Structure Controller),of which control rules are extracted from the concepts of VSC(Variable Structure Control). FLC(Fuzzy Logic Controller) based on linguistic rules has the advantages of not needing of some exact mathematical model for plant to be controlled. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbances, parameter variations and uncertainties in sliding mode. In addition, the method has the properties of FLC-noise rejection capability etc. The computer simulations have been carried out for position control of DC servo motor to show the usefulness of the proposed method and the effects of disturbances and parameter variations are considered.

Adaptive Fuzzy Wavelet Control for a class of Uncertain Nonlinear Systems (불확실성을 갖는 비선형 시스템의 적응 퍼지 웨이브렛 제어)

  • Jang, Jin-Su;Park, Ki-Kwang;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1726-1727
    • /
    • 2007
  • In this paper, a systematic guideline is introduced to design a stable adaptive fuzzy wavelet controller with sliding mode for a class of uncertain nonlinear systems. Based on the Lyapunov synthesis approach, we construct the fuzzy wavelet controller such that it can basically control and guarantee the stability of the whole control system. On the other hand, a robust controller is design to restrain or eliminate the disturbance and assure the desired output accuracy of a control system. Some experimental results for a chaotic system are provided here to demonstrate the effectiveness of the control algorithm.

  • PDF