• Title/Summary/Keyword: sliding angle

Search Result 292, Processing Time 0.026 seconds

Design of Adaptive Fuzzy Sliding Mode Controller based on Fuzzy Basis Function Expansion for UFV Depth Control

  • Kim Hyun-Sik;Shin Yong-Ku
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.217-224
    • /
    • 2005
  • Generally, the underwater flight vehicle (UFV) depth control system operates with the following problems: it is a multi-input multi-output (MIMO) system because the UFV contains both pitch and depth angle variables as well as multiple control planes, it requires robustness because of the possibility that it may encounter uncertainties such as parameter variations and disturbances, it requires a continuous control input because the system that has reduced power consumption and acoustic noise is more practical, and further, it has the speed dependency of controller parameters because the control forces of control planes depend on the operating speed. To solve these problems, an adaptive fuzzy sliding mode controller (AFSMC), which is based on the decomposition method using expert knowledge in the UFV depth control and utilizes a fuzzy basis function expansion (FBFE) and a proportional integral augmented sliding signal, is proposed. To verify the performance of the AFSMC, UFV depth control is performed. Simulation results show that the AFSMC solves all problems experienced in the UFV depth control system online.

Finite-Time Convergent Guidance Law Based on Second-Order Sliding Mode Control Theory

  • Ji, Yi;Lin, Defu;Wang, Wei;Lin, Shiyao
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.697-708
    • /
    • 2017
  • The complex battlefield environment makes it difficult to intercept maneuvering targets for guided missiles. In this paper, a finite-time convergent (FTC) guidance law based on the second-order sliding mode (SOSM) control theory is proposed to achieve the requirements of stability, accuracy and robustness. More specifically, a second-order sliding mode observer (SMOB) is used to estimate and compensate for the total disturbance of the controlled system, while the target acceleration is extracted from the line-of-sight (LOS) angle measurement. The proposed guidance law can drive the LOS angular rate converge to zero in a finite time, which means that the missile will accurately intercept the target. Numerical simulations with some comparisons are performed to demonstrate the superiority of the proposed guidance law.

A Study on Sensorless Control of a PMSM using Sliding Mode Observer in High Speed Range (슬라이딩 모드 관측기를 이용한 고속 영역에서의 PMSM 센서리스 제어에 관한 연구)

  • 강계룡;김장목;이상혁;황근배;김경훈
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.30-36
    • /
    • 2004
  • An iterative sliding mode observer is proposed to sensorless control of a PMSM(Permanent Magnet Synchronous Motor). The proposed sliding mode observer has the character which is robust to the disturbance and parameters variation. A low pass filter with the variable cut-off frequency is also proposed to compensate the delay of the rotor angle according to the rotor speed, it is led to save memory and minimize operation time. Experimental results show that the proposed sliding mode observer leads to the proper performance.

The Control of an Inverted Pendulum using Fuzzy-Sliding Control (퍼지 슬라이딩 제어를 이용한 도립 진자 제어)

  • Jang, Byeong-Hun;Ko, Jae-Ho;Bae, Young-Chul;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.480-482
    • /
    • 1998
  • Sliding mode is a robust control method and can be applied in the presence of model uncertainties and parameter disturbances. This study shows that the proposed fuzzy sliding mode control could reduce chattering problemed in sliding mode control. In this paper, an inverted pendulum is effectively controlled by the fuzzy sliding control technique. To reduce movable region of the inverted pendulum body, the angle and its integrated quantity are applied to the controller. The effectiveness of result is shown by the simulation and the experimental test for the inverted pendulum.

  • PDF

Dynamic Frictional Behavior of Saw-cut Rock Joints Through Shaking Table Test (진동대 시험에 의한 편평한 암석 절리면의 동적 마찰거동 특성)

  • Park Byung-Ki;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.58-72
    • /
    • 2006
  • In recent years, not only the occurrences but the magnitude of earthquakes in Korea are on an increasing trend and other sources of dynamic events including large-scale construction, operation of hi띤-speed railway and explosives blasting have been increasing. Besides, the probability of exposure fir rock joints to free faces gets higher as the scale of rock mass structures becomes larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, a shaking table test system was set up and a series of dynamic test was carried out to examine the dynamic frictional behavior of rock joints. In addition, a computer program was developed, which calculated the acceleration and deformation of the sliding block theoretically based on Newmark sliding block procedure. The static friction angle was back-calculated by measuring yield acceleration at the onset of slide. The dynamic friction angle was estimated by closely approximating the experimental results to the program-simulated responses. As a result of dynamic testing, the static friction angle at the onset of slide as well as the dynamic friction angle during sliding were estimated to be significantly lower than tilt angle. The difference between the tilt angle and the static friction angle was $4.5\~8.2^{\circ}$ and the difference between the tilt angle and the dynamic friction angle was $2.0\~7.5^{\circ}$. The decreasing trend was influenced by the magnitude of the base acceleration and inclination angle. A DEM program was used to simulate the shaking table test and the result well simulated the experimental behavior. Friction angles obtained by shaking table test were significantly lower than basic friction angle by direct shear test.

The Calculation and Design Method of Active Earth Pressure with Type of Gravity Structures (중력식 구조물의 형태에 따른 주동토압 산정과 설계법 제안)

  • Kim, Byung-Il;Jeong, Young-Jin;Kim, Do-Hyung;Lee, Chung-Ho;Han, Sang-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.47-63
    • /
    • 2014
  • In this study theories of earth pressure such as Rankine, Coulomb, Trial Wedge, Improved Trial Wedge, used in the design for onshore and offshore structures, are analyzed and the characteristics of loaded pressure to virtual back (wall, plane) and wall surface in accordance with the structure type are suggested. To investigate characteristics of earth pressure, gravity retaining wall with inclined angle and cantilever wall with inclined ground are movilized for onshore structures and caisson and block type quay wall are mobilized for offshore structures. Based on various theories, the earth pressure applied angle(wall friction angle) and sliding angle toward the wall, which is influenced by the heel length, are calculated and compared. In the case of long heel, the pressure by Rankine's method in virtual plane and the mobilized angle are most reasonably estimated by the ground slope, and in the case of short heel, the pressure by Coulomb's method and the mobilized angle by the angle of wall friction. In addition, the sliding angle toward the wall estimated by the improved trial wedge method is large than the value of Rankine's method. Finally, in this study the reasonable method for calculating the pressure and the mobilized angle that can be applied to the routine design of port structures is proposed. The proposed method can decide the earth pressure with length of a heel and a self weight of retaining wall according to sliding angle toward the wall.

A Kinematic Analysis on Propulsion of COG by Types of Fin-kick in SCUBA Diving (잠수 휜 킥 유형별 신체중심 추진 동작의 운동학적 분석)

  • Ryew, Che-Cheong;Oh, Hyun-Soo;Kim, Jin-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.11-21
    • /
    • 2007
  • The study was undertaken to present the quantitative materials available in underwater industries, underwater rehabilitation & physical training through comparison & analysis of effects contributing to propulsion of COG by types of fin-kick in underwater activities. For this 3D cinematography was performed for the skilled subjective and conclusions obtained on the basis of analysis of kinematic variables were as follows. In temporal variable the delay in the order of flutter>side>dolphin kick in elapsed time by total & phase resulted in longer sliding phase by larger fin kick of extension & flexion of both leg and thus more contributed in propulsion of COG. than those of the otherwise. In linear variable the contribution ratio to the result of propulsion of COG in both propulsive(mean $35.39{\pm}7.93cm$ in Y axis) and sliding phases(mean $66.36{\pm}11.01cm$ in Y axis)was shown to be order of flutter>dolphin>side fin kick. the maximum velocity of COG in Y direction was showed in both propulsive and sliding phases, and the contribution ratio to the propulsion of COG was in the order of flutter$\geq$dolphin>side fin kick. In angular variable the Significant difference in angle of leg joint by types of fin kick in both leg was showed but no routine order. The Significant difference in angular velocity of leg joint by types of fin kick in both leg was showed in the order of flutter>dolphin$\geq$side fin kick in propulsive but no in sliding phase. The Fluid resistance by tilting angle of trunk in both propulsive and sliding phase was decreased in the order of flutter>dolphin$\geq$side fin kick and tilting angle of trunk of the skilled was smaller than that of the unskilled in difference of maximum mean 7.97degree and minium mean 2.06degree. In summary of the above, It will desirable fin kick type because of more contribution to COG propulsion by the velocity & displacement in Y-axis and less fluid resistance by tilting angle of trunk and larger angular velocity in the case of more delayed in elapsed time of propulsive phase than that of the otherwise.

Development of a Static and Dynamic Characteristics Analysis System for Machine -Tool Spindle Systems with 3 Lobe Sliding Bearings (3원호 미끄럼 베어링을 적용한 공작기계 주축계의 정적 및 동적 특성 해석시스템 개발)

  • 조재완
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.99-107
    • /
    • 2000
  • In this study, a static and dynamic characteristics analysis system for machine tool spindle systems with 3 lobe sliding bearing is developed based on Timoshenko theory, finite element method and windows programming techniques. And the characteristics value of 3 lobe sliding bearing such as eccentricity ratio, attitude angle, friction coefficient , stiffness coefficients, damping coefficients and so on, are determined by using the thermal equilibrium conditions of spindle systems. Since the developed system has various analysis modules related to static deformation analysis, modal analysis, frequency responses analysis and so on, it can be utilized to perform systematically the design an devaluation process of spindle systems with 3 lobe sliding bearing under windows GUI environment.

  • PDF

Design of Sliding Mode Controller for Ship Position Control (선박위치제어를 위한 슬라이딩모드 제어기 설계)

  • Bui, Van Phuoc;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.869-874
    • /
    • 2011
  • This paper addresses the trajectory tracking problem for ship berthing by using sliding mode technique. With significant potential advantages: insensitivity to plant nonlinearities, parameter variations, remarkable stability and robust performance with environmental disturbances, the multivariable sliding modes controller is proposed for solving trajectory tracking of ship in harbor area. In this study, the ship position and heading angle are simultaneously tracked to guarantees that the ship follows a given path (geometric task) with desired velocities (dynamic task). The stability of the proposed control law is proved based on Lyapunov theory. The proposed approach has been simulated on a computer model of a supply vessel with good results.

A Study on Sensorless Control of PMSM using Sliding Mode Observer in high speed range (슬라이딩 모드 관측기를 이용한 고속 영역에서의 PMSM 센서리스 제어에 관한 연구)

  • Kang K.L.;Kim Jang-Mok;Lee S.H.;Hwag K.B.;Kim K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.745-749
    • /
    • 2003
  • The iterative sliding mode observer is proposed to control sensorless PMSM(Permanent Magnet Synchronous Motor). Proposed sliding mode observer has the character which is robust to the disturbance and parameter variation. Low pass filter with the variable cutoff frequency is also proposed to compensate rotor angle, it is led to saving memory and minimizing operation time. Experimental results shows that the proposed sliding mode observer leads to the proper performance.

  • PDF