• 제목/요약/키워드: sliding angle

Search Result 288, Processing Time 0.272 seconds

Effects of Input Harmonics, DC Offset and Step Changes of the Fundamental Component on Single-Phase EPLL and Elimination

  • Luo, Linsong;Tian, Huixin;Wu, Fengjiang
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1085-1092
    • /
    • 2015
  • In this paper, the expressions of the estimated information of a single-phase enhanced phase-locked loop (EPLL), when input signal contains harmonics and a DC offset while the fundamental component takes step changes, are derived. The theoretical analysis results indicate that in the estimated information, the nth-order harmonics cause n+1th-order periodic ripples, and the DC offset causes a periodic ripple at the fundamental frequency. Step changes of the amplitude, phase angle and frequency of the fundamental component cause a transient periodic ripple at twice the frequency. These periodic ripples deteriorate the performance of the EPLL. A hybrid filter based EPLL (HF-EPLL) is proposed to eliminate these periodic ripples. A delay signal cancellation filter is set at the input of the EPLL to cancel the DC offset and even-order harmonics. A sliding Goertzel transform-based filter is introduced into the amplitude estimation loop and frequency estimation loop to eliminate the periodic ripples caused by the residual input odd-order harmonics and step change of the input fundamental component. The parameter design rules of the two filters are discussed in detail. Experimental waveforms of both the conventional EPLL and the proposed HF-EPLL are given and compared with each other to verify the theoretical analysis and advantages of the proposed HF-EPLL.

A Study on Startup-Characteristic of Sensorless Controlled IPMSM Employing Sliding Mode Observer (슬라이딩 모드 관측기를 이용한 IPMSM의 센서리스 제어의 기동특성에 관한 연구)

  • Kim, Sang-Hun;Kwon, Soon-Jae;Kim, Marn-Go;Jung, Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • This paper presents the improvement of start-up characteristic of sensorless controlled IPMSM(Interior Permanent Magnet Synchronous Motor) with SMO(Sliding Mode Observer). It is difficult to utilize the rotor position information at starting point for the back EMF estimation based sensorless control. For this reason, open loop control is normally used during start-up period. However, changing from open loop to closed loop control might bring a problem on the transient characteristics for difference load conditions. To solve this problem, we add another rotor angle controller. Simulation results and experimental results are presented to verify proposed method.

Prediction of the Shear Strength of FRP Strengthened RC Beams (I) - Development and Evaluation of Shear strength model - (FRP로 전단 보강된 철근콘크리트 보의 전단강도 예측 (I) - 전단강도 예측 모델제안 및 검증 -)

  • Sim Jong-Sung;Oh Hong-Seob;Moon Do-Young;Park Kyung-Dong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.343-351
    • /
    • 2005
  • This study developed a shear strength prediction model of FRP strengthened reinforced concrete beams in shear. The primary design parameters were shear crack angle and shear span to depth ratio of FRP reinforcement. Of primary concern In the suggested model was the FRP debonding failure, which Is a typical fracture mode of RC beams strengthened with FRP, The proposed model used a crack sliding model based on modified plasticity theory. To address the effect of the shear span to depth ratio, the arch action was considered in the proposed model. The proposed model was applied to RC beams strengthened with FRP. The results showed that the proposed model agree with test results.

Numerical Investigation of the Effect of Spacing in Coaxial Propeller Multi-Copter in Hovering (멀티콥터용 동축반전 프로펠러 상하 간격에 따른 제자리 비행 공력 특성에 대한 수치적 연구)

  • Sim, Min-Cheol;Lee, Kyung-Tae;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.89-97
    • /
    • 2020
  • In this study, a numerical analysis was performed on 26 inch single and coaxial propeller using the ANSYS Fluent 19.0 Solver to analyse the effect of the distance between coaxial propellers as one of the design parameter. The Moving Reference Frame (MRF) method was used for single propeller, while the sliding mesh method was used for a coaxial propeller to analyse the flow field varying with azimuth angle. The thrust and power are decreased as the upper and lower propeller approaching each other. As H/D is increased, interference between the propellers is decreased. According to the flow field variable contour of the coaxial propeller, it appears that the change in aerodynamic performance is due to the loading effect and the tip vortex wake effect.

Modeling and Direct Power Control Method of Vienna Rectifiers Using the Sliding Mode Control Approach

  • Ma, Hui;Xie, Yunxiang;Sun, Biaoguang;Mo, Lingjun
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.190-201
    • /
    • 2015
  • This paper uses the switching function approach to present a simple state model of the Vienna-type rectifier. The approach introduces the relationship between the DC-link neutral point voltage and the AC side phase currents. A novel direct power control (DPC) strategy, which is based on the sliding mode control (SMC) for Vienna I rectifiers, is developed using the proposed power model in the stationary ${\alpha}-{\beta}$ reference frames. The SMC-based DPC methodology directly regulates instantaneous active and reactive powers without transforming to a synchronous rotating coordinate reference frame or a tracking phase angle of grid voltage. Moreover, the required rectifier control voltages are directly calculated by utilizing the non-linear SMC scheme. Theoretically, active and reactive power flows are controlled without ripple or cross coupling. Furthermore, the fixed-switching frequency is obtained by employing the simplified space vector modulation (SVM). SVM solves the complicated designing problem of the AC harmonic filter. The simplified SVM is based on the simplification of the space vector diagram of a three-level converter into that of a two-level converter. The dwelling time calculation and switching sequence selection are easily implemented like those in the conventional two-level rectifier. Replacing the current control loops with power control loops simplifies the system design and enhances the transient performance. The simulation models in MATLAB/Simulink and the digital signal processor-controlled 1.5 kW Vienna-type rectifier are used to verify the fast responses and robustness of the proposed control scheme.

Analysis of Rock Slope Behavior Utilizing the Maximum Dip Vector of Discontinuity Plane (불연속면의 최대경사벡터를 활용한 사면거동해석)

  • Cho, Taechin
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.332-345
    • /
    • 2019
  • Maximum dip vector of individual joint plane, which can be uniquely defined on the hemispherical projection plane, has been established by considering its dip and dip direction. A new stereographic projection method for the rock slope analysis which employs the maximum dip vector can intuitively predict the failure modes of rock slope. Since the maximum dip vector is uniquely projected on the maximum dip point of the great circle, the sliding direction of discontinuity plane can be recognized directly. By utilizing the maximum dip vector of discontinuity both the plane sliding and toppling directions of corresponding blocks can be discerned intuitively. Especially, by allocating the area of high dip maximum dip vector which can form the flanks of sliding block the potentiality for the formation of virtual sliding block has been estimated. Also, the potentiality of forming the triangular-sectioned sliding block has been determined by considering the dip angle of joint plane the dip direction of which is nearly opposite to that of the slope face. Safety factors of the different-shaped blocks of triangular section has been estimated and compared to the safety factor of the most hazardous block of rectangular section. For the wedge analysis the direction of crossline of two intersecting joint planes, which has same attribute of the maximum dip vector, is used so that wedge failures zone can be superimposed on the stereographic projection surface in which plane and toppling failure areas are already lineated. In addition the maximum dip vector zone of wedge top face has been delineated to extract the wedge top face-forming joint planes the orientation of which provides the vital information for the analysis of mechanical behavior of wedge block.

An Experimental Study on the Stabilizing Effect of Nails Against Sliding (사면에 설치된 쏘일네일링의 활동억지효과에 대한 실험적 연구)

  • Hong Won-Pyo;Song Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.5-17
    • /
    • 2006
  • In order to investigate the stabilizing effect of nails against sliding, a series of model tests were carried out. The apparatus of model test was designed to perform the model test of soil slope reinforced by nails. The instrumentation system was used to measure the deflection behavior of nails during slope failure. As a result of model tests, the quantity and the occurred position of the maximum bending stress are changed according to the area ratio and the inclination angles of nails. The maximum stabilizing effect against sliding of nails is presented at 0.7$\%$ of the area ratio because the biggest maximum bending stress occurs at this time. But, the stabilizing effect of nails decreases with more than 0.7$\%$ of the area ratio. In the same condition of the area ratio, the stabilizing effect of nails is excellent at -10$^{circ}$ of the inclination angles of nails. The sliding surface can be predicted on the basis of the position of the maximum bending stress in each nails. The shape and depth of sliding surface are changed according to the area ratio and the inclination angles of nails.

A Study on Transportation Characteristics of Debris dependent on Geologic Conditions (지질조건에 따른 사태물질 이동특성 고찰)

  • Chae Byung-Gon;Kim Won-Young;Lee Choon-Oh;Kim Kyeong-Su;Cho Yong-Chan;Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.185-199
    • /
    • 2005
  • Properties of sliding materials are dependent on the lithology because debris is the product of rock weathering processes. In order to characterize transportation behavior of debris dependent of debris types, this study selected 26 debris flows over three areas composed with different rock weathering types and topographic conditions. Analyses of lithology, weathering, and topographic characteristics were performed by detailed field survey. Based on the field survey data, transportation behavior of debris was studied at the aspect of the relationship of grain size and volume of debris as well as topographic conditions. According to the study results, change of slope angle is very influential factor on runout distance of debris among the topographic factors. Because the sliding velocity and the energy of debris are frequently changed and more irregular on an undulating slope, the unout distance of debris is larger than that of an uniformly dipping slope. Runout distance of debris is also influenced by volume and grain size of debris. Volume of debris in the gabbro is four or five times larger than that of the granite area because it is controlled by the lithology. Considered with grain size distribution, runout distance of debris is longer in the gabbro area which is composed with irregular grain size bearing large corestones than that in the medium grained granite area.

Dynamic Frictional Behavior of Artificial Rough Rock Joints under Dynamic Loading (진동하중 하에서 거친 암석 절리면의 동력 마찰거동)

  • Jeon Seok-Won;Park Byung-Ki
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.166-178
    • /
    • 2006
  • Recently, the frequency of occurring dynamic events such as earthquakes, explosives blasting and other types of vibration has been increasing. Besides, the chances of exposure for rock discontinuities to free faces get higher as the scale of rock mass structures become larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, artificially fractured rock joint specimens were prepared in order to examine the dynamic frictional behavior of rough rock joint. Roughness of each specimen was characterized by measuring surface topography using a laser profilometer and a series of shaking table tests was carried out. For mated joints, the static friction angle back-calculated ken the yield acceleration was $2.7^{\circ}$ lower than the tilt angle on average. The averaged dynamic friction angle for unmated joints was $1.8^{\circ}$ lower than the tilt angle. Displacement patterns of sliding block were classified into 4 types and proved to be related to the first order asperity of rock joint. The tilt angle and the static friction angle for mated joints seem to be correlated to micro average inclination angle which represents the second order asperity. The tilt angle and the dynamic friction angle for unmated Joints, however, have no correlation with roughness parameters. Friction angles obtained by shaking table test were lower than those by direct shear test.

Nonsurgical correction of a severe anterior deep overbite accompanied by a gummy smile and posterior scissor bite using a miniscrew-assisted straight-wire technique in an adult high-angle case

  • Wang, Xue-Dong;Zhang, Jie-Ni;Liu, Da-Wei;Lei, Fei-fei;Zhou, Yan-Heng
    • The korean journal of orthodontics
    • /
    • v.46 no.4
    • /
    • pp.253-265
    • /
    • 2016
  • In the present report, we describe the successful use of miniscrews to achieve vertical control in combination with the conventional sliding MBT$^{TM}$ straight-wire technique for the treatment of a 26-year-old Chinese woman with a very high mandibular plane angle, deep overbite, retrognathic mandible with backward rotation, prognathic maxilla, and gummy smile. The patient exhibited skeletal Class II malocclusion. Orthodontic miniscrews were placed in the maxillary anterior and posterior segments to provide rigid anchorage and vertical control through intrusion of the incisors and molars. Intrusion and torque control of the maxillary incisors relieved the deep overbite and corrected the gummy smile, while intrusion of the maxillary molars aided in counterclockwise rotation of the mandibular plane, which consequently resulted in an improved facial profile. After 3.5 years of retention, we observed a stable, well-aligned dentition with ideal intercuspation and more harmonious facial contours. Thus, we were able to achieve a satisfactory occlusion, a significantly improved facial profile, and an attractive smile for this patient. The findings from this case suggest that nonsurgical correction using miniscrew anchorage is an effective approach for camouflage treatment of high-angle cases with skeletal Class II malocclusion.