• 제목/요약/키워드: slender section

검색결과 114건 처리시간 0.026초

복합 외력환경 중 원형 단면 세장체의 탄성응답에 관한 실험적 연구 (Experimental Study on Elastic Response of Circular Cross-section Slender Body to Forced Oscillation, Waves, and Current)

  • 박지원;이승재;조효제;황재혁;한성훈
    • 한국해양공학회지
    • /
    • 제30권2호
    • /
    • pp.91-99
    • /
    • 2016
  • The global demand for oil and natural gas has increased, and resource development is moving to the deep sea. Floating and flexible offshore structures such as semi-submersible, spar, and FPSO structures have been widely used. The major equipment of floating structures is always exposed to waves, currents, and other marine environmental factors, which cause structural damage. Moreover, flexible risers are susceptible to an exciting force due to the motion of the floating body. The inline and transverse responses from the three-dimensional behavior of a floating structure occur because of various forces. Typical risers are made of steel pipe and applied in the oil and gas development field, but flexible materials such as polyethylene are suitable for OTEC risers. Consequently, the optimal design of a flexible offshore plant requires a dynamic behavior analysis of slender bodies made of the different materials commonly used for offshore flexible risers. In this study, a three-dimensional motion measurement device was used to analyze the displacements of riser models induced by external force factors, and forced oscillation of a riser was linked to forced oscillation under a steady flow and regular wave condition.

고강도콘크리트충전 각형강관장주의 내력에 관한 실험적 연구 (An Experimental Study on Stength of Slender Square Tube Columns Filled with High Strength Concrete)

  • 서성연;정진안
    • 한국강구조학회 논문집
    • /
    • 제14권4호
    • /
    • pp.471-479
    • /
    • 2002
  • 본 논문에서는 고강도콘크리트충전 각형강관장주에 대한 실험결과와 탄소성해석결과를 비교분석했다. 실험체는 모두 고강도콘크리트 충전 각형강관장주로 18개를 제작하였으며, 편심비에 따라 중심 및 편심가력하였다. 본 연구의 주요 파라메타는 단면폭에 대한 유효좌굴 길이의 비($L_K$/D)= 4, 8, 12, 24, 30와 가력편심비(e)=0, k, 3k이다. 본 논문에서 고강도콘크리트 충전 각형강관장주의 내력에 관한 해석 및 실험을 통하여 다음과 같은 결과를 얻었다. $L_K$/D=12 이하의 고강도콘크리트충전 각형강관단주는 콘크리트 감소계수 $c{\gamma}u=0.85$를 고려한 전소성내역에 도달했으나, $L_K$/D=18 이상의 장주실험체는 콘크리트 감소계수를 고려한 전소성내력에 도달하지 않았다. 실험에 의한 고강도콘크리트충전 각형강관장주의 탄소성거동은 제안된 해석치의 종국내력$N_{ASSUMED}$과 비교적 양호한 접근을 보여주었다. 콘크리트 압축강도의 감소계수 $c{\gamma}u=0.85$를 고려하지 않은 CFT설계기준과 고강도 콘크리트를 충전한 각형강관기둥의 실험결과치는 비교적 잘 일치함을 알 수 있었다.

Lock-in and drag amplification effects in slender line-like structures through CFD

  • Belver, Ali Vasallo;Iban, Antolin Lorenzana;Rossi, Riccardo
    • Wind and Structures
    • /
    • 제15권3호
    • /
    • pp.189-208
    • /
    • 2012
  • Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.

철근비 변화에 따른 철근콘크리트 기둥의 거동에 관한 실험적 연구 (An Experimental Study on the Behavior of Reinforced Concrete Columns Subjected Longitudinal Steel Ratio.)

  • 조성찬;장정수;김광석;박진희;김윤용;한상훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.284-292
    • /
    • 1995
  • This paper is on experimental study on the behavior of reinforced concrete columns subjected to longitudinal steel ratio To investigate the effects of concrete strength and longitedinal steel ratio on the behavior of reinforced concrete columns. a series of tests were carried out for thirty-six tied reinforced concrete columns with a 100mm square cross section and three slendemess ratio of 15, 30 and 50. And To study and illustrate the change of the ultimate loads and that of displacements, two different concrete strength of 180,26kfg/$\textrm{cm}^2$, 819,36kfg/$\textrm{cm}^2$ and five different longitudinal steel ratio of 0.5, 1.0, 4.0, 5.7 and 10.3% were used. The boundary conditions at the ends were both hinged and the end eccentricities (17mm) were equal and of the same sign. While the ultimate load capacity of high-strength concrete column was much increased when the columns were short, that was not when the columns were slender. The effect of longitudinal steel ratio on the increased of ultimate load of column was more evident for slender columns than for short ones and the ultimate of longitudinal steel ratio were more pronounced with increasing concrete strength. The more inserted the longitudinal steel, the more increased the ultimate load, but the superabundance of longitudinal steel ratio over the limitation of maximum steel ratio in ACI code was used, it was showed that the ultimate load was rather decreased.

  • PDF

Out-of-plane buckling and bracing requirement in double-angle trusses

  • Chen, Shaofan;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • 제3권4호
    • /
    • pp.261-275
    • /
    • 2003
  • Truss members built-up with double angles back-to-back have monosymmetric cross-section and twisting always accompanies flexion upon the onset of buckling about the axis of symmetry. Approximate formulae for calculating the buckling capacity are presented in this paper for routine design purpose. For a member susceptible only to flexural buckling, its optimal cross-section should consist of slender plate elements so as to get larger radius of gyration. But, occurrence of twisting changes the situation owing to the weakness of thin plates in resisting torsion. Criteria for limiting the leg slenderness are discussed herein. Truss web members in compression are usually considered as hinged at both ends for out-of-plane buckling. In case one (or both) end of member is not supported laterally by bracing member, its adjoining members have to provide an elastic support of adequate stiffness in order not to underdesign the member. The stiffness provided by either compression or tension chords in different cases is analyzed, and the effect of initial crookedness of compression chord is taken into account. Formulae are presented to compute the required stiffness of chord member and to determine the effective length factor for inadequately constrained compressive diagonals.

소재에 따른 스커트의 Lay Mapping 효과에 관한 연구 - 4D-Box 디자인 프로그램을 이용하여 - (A Study on the Effect of Material Choice on the Lay Mapping of Skirts - Using 4D-Box Design Program -)

  • 방수란
    • 복식
    • /
    • 제58권10호
    • /
    • pp.65-77
    • /
    • 2008
  • The purpose of this study is to analyze the correlation between the density, the Count and the width of cross section in 2D function through comparison the difference of simulated fabrics based on the various yarns, and to compare the 3D effect by Lay Mapping of diverse fabrics. The method of research is to weave the eight fabrics composed of cotton, linen, worsted, slender yarn, loop, $m{\acute{e}}lange$, woolen, and yarn twist with Hi-Tex program, and to practice 3D mapping with Hi-Print program. As a mapping object, the flared skirt which is a basic costume item is selected. As a result, the thickness of yarn in CAD system was fixed by the width of cross section rather than Count, especially by the width of core section not including the fluff section. The type of yarn such as cotton yarn, linen yarn, and worsted had effect on the shape of texture, but had few interrelations with dimension. In the case of 3D mapping, the textural characteristic and the dimension were presented precisely, whereas there were several limitations. First, the thickness of tissue has not been represented. Secondly, the effect of texture such as fuzzy look, loop was not expressed on the skirt outline including sideline and hemline. Thirdly, the difference of silhouette was not distinct. The common point in 2D and 3D operations is that the representation of texture is relatively accurate and that is difficult to measure and manifest of thickness, the side. For more professional digitalizing in fashion industry, above all in the domain of 3D, it must be supplement the subdivided and differentiated mapping process according to the texture, deviating from the existing analog-based organization which has to designate the form and silhouette suitable for tissue.

On the direct strength and effective yield strength method design of medium and high strength steel welded square section columns with slender plate elements

  • Shen, Hong-Xia
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.497-516
    • /
    • 2014
  • The ultimate carrying capacity of axially loaded welded square box section members made of medium and high strength steels (nominal yield stresses varying from 345 MPa to 460 MPa), with large width-to-thickness ratios ranging from 35 to 70, is analyzed by finite element method (FEM). At the same time, the numerical results are compared with the predicted results using Direct Strength Method (DSM), modified DSM and Effective Yield Strength Method (EYSM). It shows that curve a, rather than curve b recommended in Code for design of steel structures GB50017-2003, should be used to check the local-overall interaction buckling strength of welded square section columns fabricated from medium and high strength steels when using DSM, modified DSM and EYSM. Despite all this, EYSM is conservative. Compared to EYSM and modified DSM, DSM provides a better prediction of the ultimate capacities of welded square box compression members with large width-thickness ratios over a wide range of width-thickness ratios, slenderness ratios and steel grades. However, for high strength steels (nominal yield strength greater than 460 MPa), the numerical and existent experimental results indicate that DSM overestimates the load-carrying capacities of the columns with width-thickness ratio smaller than 45 and slenderness ratio less than 80. Further, for the purpose of making it suitable for a wider scope, DSM has been modified (called proposed modified DSM). The proposed modified DSM is in excellent agreement with the numerical and existing experimental results.

현수교 세장 내풍 단면의 개발 (Development of Slender Aerodynamic Girder for Suspension Bridges)

  • 권순덕;이명재;조의경;이승호
    • 대한토목학회논문집
    • /
    • 제30권3A호
    • /
    • pp.241-256
    • /
    • 2010
  • 본 연구에서는 변장비 70에 가까운 도전적인 현수교 단면을 개발하는데 목적을 두고 있다. 이를 위하여 먼저 강박스 현수교의 제원을 수집 분석하였다. 그 결과를 보면 강박스 현수교에서 경간장과 형상변수(교폭, 형고, 변장비, 고폭비)는 상관관계가 낮았고 고유진동수와 형상변수의 상관관계도 낮은 것으로 나타났으며, 상관관계가 높은 경간장과 고유진동수 관계는 신뢰구간별 추정식을 제시하였다. 그리고 교폭, 진동수비, 질량, 질량관성모멘트, 수직 및 비틈 고유진동수 변화에 따른 플러터 풍속의 민감도 분석을 실시하였는데, 타 변수보다 비틈 고유진동수가 플러터 풍속에 미치는 영향이 가장 큰 것으로 나타났다. 주경간장 1111 m인 현수교의 내풍 단면을 개발하기 위하여 최소 단면폭과 형고를 제약조건으로 하여 총 30개의 단면에 대한 풍동실험을 실시하고, 이로부터 한계풍속 기준을 충분히 만족하는 단면을 찾았다. 그리고 다중모드 플러터 해석으로 개발한 단면의 내풍안정성을 검증하였다. 본 연구에서 제시한 세장 단면은 향후 장대 현수교 설계시 활용할 수 있을 것으로 판단된다.

H형(形) 강(鋼) 보의 횡좌굴(橫挫屈)에 관(關)한 연구(硏究) (A Study On Lateral Buckling Of H-Section Steel Beams)

  • 김석중
    • 산업기술연구
    • /
    • 제4권
    • /
    • pp.29-35
    • /
    • 1984
  • Buckling is a significant behavior to be considered whenever we design steel structures. In the case of H-shape beams, the lateral buckling occured by bending moment must be considered. Because of the lateral buckling of H-shape beams, the bending strength of the beams are determined by the lateral buckling stress instead of the allowable bending stress. Lateral buckling stress equation, consisting of two terms, i. e. ${\sigma}_{cr}({\nu},{\omega})={\sqrt{[{\sigma}_{cr}({\nu})]^2+[{\sigma}_{cr}({\omega})]^2}}$ has been using, but for the practical purpose of use the following equations are using two, i. e. ${\sigma}_{cr}({\nu})={\frac{0.65E}{{\ell}_h/A_f}}$, ${\sigma}_{cr}({\omega})={\frac{{\pi}^2E}{({\ell}_b/i_b)^2}}$. When we use the above equations, the results are different according to the shape of beam section, and they a re rather complex. In this study lateral buckling stress equation is derived, and the proposed formula$({\sigma}_{cr}(t))$ is compared with above mentioned two basic and practical equations. To verify the proposed formula experimentaly, 16H-shape beams which have different slender ratios arc tested by applying pure bending momet. Through the experiments the buckling behavior of H-shape beams is clarified, and the results shows that the proposed formula$({\sigma}_{cr}(t))$ is accurate enough for practical purpose.

  • PDF

Predicting the axial load capacity of high-strength concrete filled steel tubular columns

  • Aslani, Farhad;Uy, Brian;Tao, Zhong;Mashiri, Fidelis
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.967-993
    • /
    • 2015
  • The aim of this paper is to investigate the appropriateness of current codes of practice for predicting the axial load capacity of high-strength Concrete Filled Steel Tubular Columns (CFSTCs). Australian/New Zealand standards and other international codes of practice for composite bridges and buildings are currently being revised and will allow for the use of high-strength CFSTCs. It is therefore important to assess and modify the suitability of the section and ultimate buckling capacities models. For this purpose, available experimental results on high-strength composite columns have been assessed. The collected experimental results are compared with eight current codes of practice for rectangular CFSTCs and seven current codes of practice for circular CFSTCs. Furthermore, based on the statistical studies carried out, simplified relationships are developed to predict the section and ultimate buckling capacities of normal and high-strength short and slender rectangular and circular CFSTCs subjected to concentric loading.