• Title/Summary/Keyword: slender columns

Search Result 125, Processing Time 0.022 seconds

Bucking Behavior of Slender Reinforced High-Strength Concrete Columns (고강도 철근콘크리트 기둥의 좌굴 거동에 관한 연구)

  • 김진근;양주경
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.129-139
    • /
    • 1993
  • 본 연구에서는 철근콘크리트 기둥의 거동을 예측하기 위하여 층상화 방법을 이용한 유한요소 해석방법이 제안되었다. 콘크리트의 강도와 철근비가 기둥의 극한강도와 거동에 미치는 영향을 규명하기 위하여 세장비가 10, 60, 100인 정방형 단면(80$\times$80mm)을 갖는 30개의 기둥에 대하여 실험을 수행하였다. 이때, 콘크리트의 강도는 25.5, 63.5, 86.2MPa로, 철근비는 1.98, 3.95%로 변화시켰다. 또한, 단부조건은 양단힌지로 하고, 편심량은 기둥은 양단에서 같은 방향으로 24mm로 동일하게 하였다. 본 연구에서 제안된 해석방법은 철근콘크리트 기둥의 거동을 잘 예측하며, ACI의 모멘트 확대계수법은 고강도 콘크리트 장주에 대해서는 안전측이 아닌 것으로 나타났다. 콘크리트의 강도가 기둥의 극한강도에 미치는 영향은 기둥의 세장비가 증가할수록 감소하였으며, 콘크리트의 강도가 커질수록 세장기둥의 좌굴파괴 가능성은 증가하였다. 또한, 철근비를 증가시킬 경우, 기둥의 축력이 최대가 될 때의 모멘트가 증가되었으며, 기둥의 극한강도 증가량은 단주보다는 장주에서 더 크게 나타났다. 철근비 증가에 의해 나타나는 이러한 기둥의 극한강도 증가량과 모멘트 증가량은 콘크리트의 강도가 커질수록 증대되었다.

Elastic Critical Load of Non-symmetrically Tapered Columns by Numerical Method (수치해석법에 의한 비대칭 변단면 기둥의 탄성 임계하중)

  • 신세욱;김선혜;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.11-18
    • /
    • 1999
  • For the proper design of a slender compression member, the exact determination of the elastic critical load is crucial, In the cases of non-prismatic compression members, the determinations of the elastic critical load cannot be usually expressed in closed forms. h this paper, the non-symmetrically tapered compression members with arbitrary boundary conditions me analysed by using the finite element method to determine the elastic critical load. The main parameters considered in the numerical analysis are the In Parameter, $\alpha$ and the sectional property parameter, m. To generaliza the unmerical analysis, of the computed results for each sectional parameter, m are presented in algebraic equations, which agrees fairy well with those by F.E.M in most cases.

  • PDF

Elastic Critical Laod of Tapered Columns (단순지지 변단면 압축재의 임계하중)

  • 홍종국;김순철;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.252-259
    • /
    • 1999
  • One of the most important factors for a proper design of a slender compression member may be the exact determination of the elastic critical load of that member. In the cases of non-prismatic compression member, however, there are times when the exact critical load becomes impossible to determinate if one relies on the neutral equilibrium method or energy principle. Here in this paper, the approximate critical loads of symmetrically or non-symmetrically tapered members are computed by finite element method. The two parameters considered in this numerical analysis are the taper parameter, $\alpha$ and the sectional property parameters, m. The computed results for each sectional property parameter, m are presented in an algebraic equation which agrees with those by F.E.M The algebraic equation can be easily used by structural engineers, who are engaged in structural analysis and design of non-prismatic compression member.

  • PDF

Hydroelastic Response Analysis of TLPs in Regular Waves (규칙파 중 TLP의 유탄성응답 해석)

  • Ha, Y.R.;Lee, S.C.;Goo, J.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.48-54
    • /
    • 2010
  • An improved numerical scheme, to which the hydroelastic method is adapted, is introduced for predicting the motion and structural responses of tension leg platforms(TLPs) in regular waves. The numerical approach in this work is based on a combination of the three dimensional source distribution method and the finite element method. The hydrodynamic interactions among TLP members, such as columns and pontoons, are included in the motion and structural response analysis. The drag forces on the submerged slender members, which are proportional to the square of relative velocity, are included in order to estimate the responses of members with better accuracy. Comparisons with other results verify the works in this paper.

Elastic Critical Load of Tapered Columns (변단면 압축재의 임계하중)

  • 김태순;홍종국;김순철;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.421-428
    • /
    • 1999
  • The elastic critical load of a slender compression member plays an important role when the proper design of that member is required. For the tapered compression members, however, there are cases when the conventional neutral equililbrium or energy method can't be applied to the determination of critical loads of those members. In this paper, finite element method is applied to the approximate determination of the symmetrically tapered bars. Here in this paper, the bars are assumed to take sinusoidally changing shapes along their axes. The parameters considered in this study are taper parameter, $\alpha$ and the sectional property parameter, m. The computed results by finite element method are represented in the forms of algebraic equations. Regression technique is employed to determine the coefficients of algebraic equations. The critical loads estimated by the proposed algebraic equations coincide fairly well with those of finite element method.

  • PDF

Vibration analysis of steel frames with semi-rigid connections on an elastic foundation

  • Vu, Anh Q.;Leon, Roberto T.
    • Steel and Composite Structures
    • /
    • v.8 no.4
    • /
    • pp.265-280
    • /
    • 2008
  • An investigation on the combined effect of foundation type, foundation flexibility, axial load and PR (semi-rigid) connections on the natural frequencies of steel frames is presented. These effects were investigated using a suitable modified FE program for cases where the foundation flexibility, foundation connectivity, and semi-rigid connections could be treated as equivalent linear springs. The effect of axial load on the natural frequency of a structure was found to be significant for slender structures subjected to high axial loads. In general, if columns of medium slenderness are designed without consideration of axial load effects, the frequency of the structure will be overestimated. Studies on the 3-story Los Angeles PR SAC frame indicate that the assumption of rigid connections at beam-column and column-base interfaces, as well as the assumption of a rigid foundation, can lead to significant errors if simplified design procedures are used. These errors in an equivalent static analysis are expected to lead to even more serious problems when considering the effect of higher modes under a non-linear dynamic analysis.

A Dynamic Response Analysis of Tension Leg Platforms Including Drag Forces in Regular Waves (규칙파중 항력을 고려한 TLP의 동적응답해석)

  • Ha, Young-Rok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.229-237
    • /
    • 2008
  • For predicting the motion and structural responses of tension leg platforms(TLPs) in regular waves, a numerical scheme is introduced. The numerical approach in this paper is based on a combination of the three dimensional source distribution method and the finite element method. The hydrodynamic interactions among TLP members, such as columns and pontoons, are included in the motion and structural response analysis. The drag forces on the submerged slender members, which are proportional to the square of relative velocity, are newly included in order to estimate the responses of members with better accuracy. Comparisons with other's results verifies the works in this paper.

Evaluation of Deformation Capacity of Slender Reinforced Concrete Walls with Thin Web (얇은 두께의 웨브를 갖는 세장한 벽체의 변형 능력 평가)

  • Eom, Tae-Sung;Park, Hong-Gun;Kim, Jae-Yo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.59-68
    • /
    • 2010
  • In the present study, the deformation capacity of slender shear walls with thin web subject to inelastic deformation after flexural yielding was studied. Web-crushing and rebar-fracture were considered as the governing failure mechanisms of walls. To address the effect of the longitudinal elongation on web-crushing and rebar-fracture, the longitudinal elongation was predicted by using truss model analysis. The failure criteria by web-crushing and rebar-fracture were defined as a function of the longitudinal elongation. The proposed method was applied to 17 shear wall specimens with boundary columns, and the prediction results were compared with the test results. The results showed that proposed method predicted the maximum deformations and failure modes of the wall specimens with reasonable precision.

Design Equation for Square CFT Columns with Large Width-to-Thickness Ratio (폭두께비가 큰 각형CFT 단주의 설계식)

  • Kim, Sun Hee;Choi, Young Whan;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.537-544
    • /
    • 2009
  • The design standards, such as AISC-LRFD (2005) and KBC-2005, specify the maximum width-to-thickness ratio that can be used for computing the strength of the concrete-filled tube (CFT), and do not include any formula for computing the strength when the width-to-thickness ratio is over the limit. This paper proposes a strength equation for CFTs with a large width-to-thickness ratio by acknowledging the fact that the stiffened slender steel platehas substantial postbuckling strength, and that it therefore can be more economical to use it. The equation adopts the concept of effective width,which is very useful for plate analysis. By comparing the strengths of AISC2005, KBC2005, and the proposed method with the results of the experiment, where the width-to-thickness ratio was regarded as the main parameter, the applicability of the proposed method was verified.

A study on the comparison of a steel building with braced frames and with RC walls

  • Buyuktaskin, Almila H. Arda
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.263-270
    • /
    • 2017
  • In this study, two geometrically identical multi-storey steel buildings with different lateral load resisting systems are structurally analyzed under same earthquake conditions and they are compared with respect to their construction costs of their structural systems. One of the systems is a steel structure with eccentrically steel braced frames. The other one is a RC wall-steel frame system, that is a steel framed structure in combination with a reinforced concrete core and shear walls of minimum thickness that the national code allows. As earthquake resisting systems, steel braced frames and reinforced concrete shear walls, for both cases are located on identical places in either building. Floors of both buildings will be of reinforced concrete slabs of same thickness resting on composite beams. The façades are assumed to be covered identically with light-weight aluminum cladding with insulation. Purpose of use for both buildings is an office building of eight stories. When two systems are structurally analyzed by FEM (finite element method) and dimensionally compared, the dual one comes up with almost 34% less cost of construction with respect to their structural systems. This in turn means that, by using a dual system in earthquake zones such as Turkey, for multi-storey steel buildings with RC floors, more economical solutions can be achieved. In addition, slender steel columns and beams will add to that and consequently more space in rooms is achieved.