• Title/Summary/Keyword: slag cement mortar

Search Result 260, Processing Time 0.024 seconds

Characteristics of Alkali-Silica Reaction according to Types and Substitution Ratios of Mineral Admixtures in Korea (국내 광물성 혼화재의 종류 및 혼입률에 따른 알칼리-실리카 반응 특성)

  • Kim, Seong-Kwon;Hong, Seung-Ho;Hur, In;Yun, Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • The distresses of alkali-silica reaction (ASR) was recently reported at highway cement concrete pavement in Korea, which showed typical cracking and spalling patterns of ARS. Korea is was no longer safe zone against ASR, needding to find a control methodology against ASR. The purpose of this research was to provide a control methodology against ASR using mineral admixtures through a series of laboratory test program. Laboratory works included the accelerated mortar bar test (AMBT) by ASTM C 1260 regulation with five types of aggregate and three types of mineral admixtures (fly ash, ground granulated blast-furnace slag and silica fume). The result of ASTM C 1260 test for five types of aggregates without mineral admixtures showed that Siltstone and Mudstone were found to be "reactive." Tuff and Andesite-1 were found to be "possiblely reactive." In case of concrete mixed with 10, 20, and 30% fly ash, all specimens except Mudstone mixed with 10% FA were found to be "non-reactive". In cases of concrete mixed with 30, 40, and 50% ground granulated blast-furnace slag and 5, 7.5, and 10% silica fume, all specimens were found to be "non-reactive." These results could be selectively applied in constructions in Korea.

Development of Flowable Backfill Material Using Waste Oyster Shell, Coal Ash, and Surplus Soil (굴패각, 석탄회 및 굴착잔토를 이용한 무다짐 처리공법용 뒷채움재 개발)

  • Kim, Min-Jin;Wang, Xue;Lee, Je Joo;Lee, Sang Ho;Kim, Sung Bae;Kim, Chang-Joon
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.423-429
    • /
    • 2013
  • This study aimed to develop flowable backfill material using oyster shell, coal ash, and surplus soil. The high temperature (> $800^{\circ}C$) reaction was required to convert $CaCO_3$ to CaO. The solid specimens formed by pozzlanic reaction between CaO and coal ash showed low unconfined compressive strength. The effect of kaolin and blast furnace slag was also examined. It was found that CaO and coal ash could not be utilized due to high cost and low performance. The use of oyster shell without calcination ($CaCO_3$) was evaluated. The specimens composing of oyster shell and cement showed the higher unconfined compressive strength than that composing of coal ash and cement. However, use of oyster shell is limited in mortar due to the presence of salt. Addition of soil into oyster shell-coal ash-cement mixture satisfied the specification of flowable backfill material by optimizing their ratio.

A Study on the Fundamental Properties of Ultra Rapid Hardening Mortar using Coal-Ash (잔골재 대체재로서 석탄회를 이용한 초속경 보수모르타르의 기초적 특성에 관한 연구)

  • Lee, Gun-Cheol;Oh, Dong-Uk;Kim, Young-Geun;Cho, Chung-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.128-135
    • /
    • 2011
  • In this study, in order to develop ultra rapid hardening mortar(URHM) for tunnel repairs using bottom ash of low recycle ratio and Admixture as Eco concept, fundamental properties of URHM on temperature condition of construction field were performed. Test result, URHM of three types for fluidity and setting time were as in the following : B > C > A. Those for low temperatures were later than the standard condition. Compressive, bending and bond strength were similar with three types as follow. In compressive strength, initial strength of the low were smaller than the standard but the low in the long-term were similar with the standard. On the contrary to this, bending strength were similar in initial strength but the low in the long-term were smaller than the standard. The low in bond strength was average 35% less than the standard. Length changes was as in the following : A > C > B. the low is two times much as the standard but the case using blast furnace slag particles noticeably reduced length changes. Water absorption coefficient and water vapor resistance were as in the following : C > A > B. In case of URHM added bottom ash, water absorption coefficient and water vapor resistance were increased because bottom ash is porous material.

  • PDF

Evaluation Method of Healing Performance of Self-Healing Materials Based on Equivalent Crack Width (등가균열폭에 기반한 자기치유 재료의 치유성능 평가 방법)

  • Lee, Woong-Jong;Kim, Hyung-Suk;Choi, Sung;Park, Byung-Sun;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.383-388
    • /
    • 2021
  • In this study, constant head water permeability test was adopted to evaluate self-healing performance of mortars containing inorganic healing materials which consist of blast furnace slag, sodium sulfate and anhydrite. Clinker powder and sand replaced for a part of cement and fine aggregates. On constant head water permeability test for self-healing mortars, unit water flow rate of mortar specimens were measured according to crack width and healing period. As a result of evaluating the healing performance of self-healing mortar, it was confirmed that with the initial crack width of 0.3mm, the healing rate at healing period of 28 days increased by more than 30%p compared to plain mortar, greatly improving the healing performance. Furthermore, the coefficient(α) which was estimated from the relationship between crack width and unit water flow rate was used for calculating equivalent crack width. By analyzing the correlation of healing rate and equivalent crack width, the time and initial crack width attaining healing target crack width were predicted.

The Properties of Multi-Component Blended High Fluidity Mortar (다성분계 고유동 모르타르의 특성)

  • Kim, Tae-Wan;Kang, Choonghyun;Bae, Ju-Ryong;Kim, In-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.124-132
    • /
    • 2018
  • This research presents the results of an investigation on the characteristic of multi-component blended high fluidity mortars. The binder was blended ordinary Portland cement(OPC), ground granulated blast furnace slag(GGBFS), calcium sulfoaluminate(CSA) and ultra rapid setting cement(URSC). The GGBFS was replaced by OPC from 30%(P7 series), 50%(P5 series) and 70%(P3 series), CSA and URSC was 10% or 20% mass. The superplasticizer of polycarboxylate type were used. A constant water-to-binder ratio(w/b)=0.35 was used for all mixtures. Test were conducted for mini slump, setting time, V-funnel, compressive strength and drying shrinkage. According to the experimental results, the contents of superplasticizer, V-funnel and compressive strength increases with an increase in CSA or URSC contents for all mixtures. Moreover, the setting time and drying shrinkage ratio decrease with and increase in CSA or URSC. CSA decreased dry shrinkage but URSC had less effect. However, the mixed binders of CSA and URSC had a large effect of reducing drying shrinkage by complementary effect. This is effective for improving the initial strength of URSC, and CSA is effective for the expansion and improvement of long-term strength.

Corrosion of Steel in Blended Concretes Containing OPC, PFA, GGBS and SF

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn Chu
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.171-176
    • /
    • 2009
  • The chloride threshold level (CTL) in mixed concrete containing, ordinary Portland cement (OPC), pulverized fuel ash (PFA) ground granulated blast furnace slag (GGBS), and silica fume (SF) is important for study on corrosion of reinforced concrete structures. The CTL is defined as a critical content of chloride at the steel depth of the steel which causes the breakdown of the passive film. The criterion of the CTL represented by total chloride content has been used due to convenience and practicality. In order to demonstrate a relationship between the CTL by total chloride content and the CTL by free chloride content, corrosion test and chloride binding capacity test were carried out. In corrosion test, Mortar specimens were cast using OPC, PFA, GGBS and SF, chlorides were admixed ranging 0.0, 0.2, 0.4, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binder. All specimens were cured 28 days, and then the corrosion rate was measured by the Tafel's extrapolation method. In chloride binding capacity, paste specimens were casting using OPC, PFA, GGBS and SF, chlorides were admixed ranging 0.1, 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binders. At 28days, solution mixed with the powder of ground specimens was used to measure binding capacity. All specimens of both experiments were wrapped in polythene film to avoid leaching out of chloride and hydroxyl ions. As a result, the CTL by total chloride content ranged from 0.36-1.44% by weight of binders and the CTL by free chloride content ranged from 0.14-0.96%. Accordingly, the difference was ranging, from 0.22 to 0.48% by weight of binder. The order of difference for binder is OPC > 10% SF > 30% PFA > 60% GGBS.

Engineering Performance of a Rapid Hardening Hydraulic Binder with Hybrid Fiber

  • Li, Mao;Kim, Jin-Man;Choi, Sun-Mi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.279-288
    • /
    • 2016
  • The fundamental performance of any construction material should cover at least two phases: safety and serviceability. Safety commonly represents adequate strength, while serviceability encompasses the control of cracking and deflections at service loads. With respect to rapid hydraulic binders as a construction material, the above two phases should also be considered. Recent research on rapid cooling ladle furnace slag (RC-LFS) has drawn much attention, particularly given that it shows remarkable rapid hydraulic ability to pulverize to a fineness of $6,300cm^2/g$. This industrial byproduct could contribute to developing the sustainability of the rapidly hardening cementitious material system. This paper aims to expand upon the applicability of an RC-LFS-based binder that is composed of two parts. It also seeks to illustrate the engineering performance of an RC-LFS-based hybrid fiber-reinforced composite and to increase the strength of the RC-LFS-based composite. Each step of this experiment followed ASTM standards. The engineering performance, in both fresh state and hardening state, was tested and discussed in this paper. According to the experimental results for fresh concrete, the air content increased following the addition of polypropylene fiber. For hardened concrete, the toughness and strength improved following the addition of a hybrid fiber. The hybrid fiber mixture, which contains 0.75% of steel fiber and 0.25% of polypropylene fiber, shows even better engineering performance than other mixtures.

Compressive Strength and Healing Performance of Mortar Using Self-healing Inorganic Materials (자기치유형 무기계 혼합재를 사용한 모르타르의 압축강도 및 치유성능)

  • Hyung-Suk, Kim;Woong-Jong, Lee;Sung, Choi;Kwang-Myong, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.577-583
    • /
    • 2022
  • In this study, the characteristics of self-healing mortars produced using an inorganic self-healing material consisting of ground granulated blast furnace slag, expansion agent, and anhydrite, were investigated. For three types of self-healing mortars with different amounts of the inorganic healing material, compressive strength was measured and the self-healing performance was evaluated through the constant water head permeability test. The healing rate and equivalent crack width according to crack-induced aging were used as indicies of healing performance evaluation. Considering the development of compressive strength of the self-healing mortars, the change in the healing rate with healing periods, and the economic feasibility, the optimal amount of inorganic self-healing materials was suggested as 20 % of the mass of cement.

A Study on Chloride Threshold Level of Blended Cement Mortar Using Polarization Resistance Method (분극저항 측정기법을 이용한 혼합 시멘트 모르타르의 임계 염화물 농도에 대한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.245-253
    • /
    • 2009
  • The importance of chloride ions in the corrosion of steel in concrete has led to the concept for chloride threshold level (CTL). The CTL can be defined as the content of chlorides at the steel depth that is necessary to sustain local passive film breakdown and hence initiate the corrosion process. Despite the importance of the CTL, due to the uncertainty determining the actual limits in various environments for chloride-induced corrosion, conservative values such as 0.4% by weight of cement or 1.2 kg in 1 $m^3$ concrete have been used in predicting the corrosion-free service life of reinforced concrete structures. The paper studies the CTL for blended cement concrete by comparing the resistance of cementitious binder to the onset of chloride-induced corrosion of steel. Mortar specimens were cast with centrally located steel rebar of 10 mm in diameter using cementitious mortars with ordinary Portland cement (OPC) and mixed mortars replaced with 30% pulverized fuel ash (PFA), 60% ground granulated blast furnace slag (GGBS) and 10% silica fume (SF), respectively, at 0.4 of a free W/B ratio. Chlorides were admixed in mixing water ranging 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binder(Based on $C1^-$). Specimens were curd 28 days at the room temperature, wrapped in polyethylene film to avoid leaching out of chloride and hydroxyl ions. Then the corrosion rate was measured using the polarization resistance method and the order of CTL for binder was determined. Thus, CTL of OPC, 60%GGBS, 30%PFA and 10%SF were determined by 1.6%, 0.45%, 0.8% and 2.15%, respectively.

Performance of Recycled Coarse Aggregate Concrete with Nylon Fiber (나일론 섬유를 적용한 순환 굵은골재 콘크리트의 성능 평가)

  • Lee, Seung-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.28-36
    • /
    • 2019
  • The adhered mortars in recycled aggregate may lower the performance of the concrete, such as by reducing in strength and durability, and cracking. In the present study, the effects of nylon fiber (NF) on the mechanical and durable properties of 100% ordinary portland cement (OPC) and 50% ground granulated blast furnace slag (GGBFS) concretes incorporating recycled coarse aggregate (RA) were experimentally investigated. Concrete was produced by adding 0 and $0.6kg/m^3$ of NF and then cured in water for the predetermined period. Measurements of compressive and split tensile strength, water permeable pore and total charge passed through concrete were carried out, and the corresponding test results were compared with those of concrete incorporating crushed coarse aggregate (CA). In addition, the microstructures of 28-day concretes were observed by using SEM technique. Test results revealed that the RA concrete showed lower performance than CA concrete because of the adhered mortars in RA. However, it was obvious that the addition of NF in RA concrete was much effective in enhancing the performance of the concretes due to the bridge effect from NF. In particular, the application of NF2 (19 mm) exhibited a somewhat beneficial effect compared with concrete incorporating NF1 with respect to mechanical properties, especially for RA concrete.