• Title/Summary/Keyword: slag aggregate

Search Result 441, Processing Time 0.027 seconds

Applicability of Steel Slag Aggregate for Artificial Armor Unit (제강슬래그 골재의 소파블록 적용성 평가)

  • Yang Eun-Ik;Lee Kwang-Gyo;Han Sang-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.591-596
    • /
    • 2004
  • In order to evaluate the applicability of steel slag aggregates for tetrapod concrete, the properties of concrete as structural material were investigated. The biochemical research of marine concrete using steel slag aggregates was also carried out. The tested concrete properties are slump, ai content, compressive strength, splitting tensile strength, elastic modulus, carbonation, hydration heat, freezing and thawing, sulfate attack, drying shrinkage, etc. The biochemical experiments are carried to research the propagation and reproduction of seaweeds and survival of bottom dwelling species. According to this experiment results, the steel slag aggregate content did not have a significant effect on compressive strength, splitting tensile strength and elastic modulus. The durability of concrete was not influenced by the steel slag aggregate content. From the biochemical research, steel slag aggregate can be evaluated as the material that is ideally suited for promoting propagation and reproduction of seaweeds and sessile benthos.

Mechanical Properties and Resistance to Freezing and Thawing of Concrete Using Air-Cooled Ferronickel Slag Fine Aggregate (서냉 페로니켈 슬래그 잔골재를 이용한 콘크리트의 역학적 특성 및 동결 융해 저항성)

  • Lee, Hong-Gik;Bae, Su-Ho;Lee, Hyun-Jin;Choi, Yun-Wang;Cho, Bong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.319-323
    • /
    • 2018
  • Ferronickel slag is a by-product from the ferronickel smelting process and it is divided into air-cooled ferronickel slag and water granulated ferronickel slag according to cooling system. The purpose of this experimental resesrch is to investigate the mechanical properties and resistance to freezing and thawing of concrete using air-cooled ferronickel slag(ACFNS) fine aggregate. For this purpose, the concrete specimens with water-cement ratio of 50% were made with ACFNS's replacement ratios of 0%, 20%, 30%, 40%, 50%, 70%, and 100% by volume of fine aggregate. It was observed from the test results that the compressive strength and static modulus of elasticity of ACFNS fine aggregate concrete were increased with increasing replacement ratio of ACFNS and the resistance to freezing and thawing of this was similar to reference concrete which had the relative dynamic modulus of elasticity of more than 90% during the freezing and thawing of 300 cycles.

The Experience Study on the Floating Properties of Concrete with Recycled Coarse Aggregate used Blast Furnace Slag (고로슬래그 미분말을 사용한 재생굵은골재 콘크리트의 유동특성에 관한 실험적 연구)

  • Kim, Ho-So;Baek, Chul-Woo;Choi, Sung-Woo;Ban, Seong-Soo;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.356-359
    • /
    • 2004
  • Recently, owing to the deterioration of reconstruction and the construction, much of the construction waste is discharged in our construction field, and the amount of construction waste are rapidly increased. These waste are raised to financial and environmental problems, so the method of reusing waste concretes has been studied and carried out many direction. Especially being want of resources, if waste concrete could be recycled as aggregate for concrete, it will contribute to solve the exhaustion of natural aggregate, in terms of saving resources and protecting environment. This study is that the floating properties of concrete with recycled coarse aggregate were investigated for the substitution of recycled coarse aggregate. The result of this study, floating properties increases and strength development of concrete is showing a clear strength increase effect compare to blast furnace slag non-mixing according to age passing in case of use blast furnace slag. The Quality of recycled coarse aggregate concrete was improved by water reducing.

  • PDF

Effects of Crushed Fine Aggregate and Durability Improvement Agent (DIA) on Blast Furnace Slag-Based Brick (내구성증진용 혼화제(DIA) 및 부순 잔골재의 복합 치환이 순환잔골재를 사용한 고로슬래그 벽돌의 특성에 미치는 영향)

  • Park, Kyung-Taek;Son, Ho-Jung;Kim, Dae-Gun;Kim, Bok-Kue;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.225-227
    • /
    • 2011
  • This study investigates the effect of crushed fine aggregate and chemical admixture (durability improvement agent, named DIA) on blast furnace slag-based brick. The control brick was made with recycled fine aggregate of 100% and, no cement was used. Test results showed that all specimens developed similar strength, except for the specimen without partial replacement of crushed fine aggregate at 3 days. However, it is interesting to note that this specimen without crushed fine aggregate resulted in the highest strength at 7 days. In addition, the DIA had a major effect on the absorption ratio of brick specimens. For the brick specimens with partial replacement of crushed fine aggregate with 10%, the addition of DIA with only 1% was enough to satisfy the code regulated by KS F 4004.

  • PDF

A Study on the Fundamental and Heat of Hydration Properties of Fly Ash Replacement Concrete Mixed with Coal Gasification Slag for Fine Aggregate (석탄 가스화 용융 슬래그를 잔골재로 사용하는 플라이애시 치환 콘크리트의 기초적 특성 및 수화열에 관한 연구)

  • Han, Min-Cheol;Choi, Il-Kyung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.1
    • /
    • pp.155-162
    • /
    • 2020
  • The aim of the research is to investigate the fundamental properties and heat of hydration reducing performance of the fly ash incorporated concrete mixture when the coal gas slag (CGS) from integrated gasification combined cycle (IGCC) is used as fine aggregate. From the results of the experiment, the workability was generally increased and the air content was decreased up to one to four percent with increasing the replacing ratio of CGS to fine aggregate. The compressive strength was similar or increased within five percent to the Plain mixture when the CGS was used as a fine aggregate. When the CGS and fly ash were used same time, the heat of hydration reducing performance was improved than single using cases either CGS or fly ash. Based on the results, for the concrete mixture using CSG as a portion of the combined fine aggregate, the general properties were improved and heat of hydration was decreased approximately 16 % when the fly ash was replaced 30 % to cement and the CGS was replaced less than 50 % to fine aggregate.

A Study on the Mechanical Properties of Mortar Using Steen Slag Fine Aggregate (제강슬래그 잔골재 사용 모르타르의 역학적 특성에 대한 고찰)

  • 문한영;유정훈;박영훈;강정용;정문철;송준혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.322-325
    • /
    • 2003
  • Recently, as quality river aggregates like sands and gravels become scarce, use of crushed stones and sands, seashore sands, and seashore gravels is increasing abruptly. And, aggregates recycled from slags and waste concretes are used. However, since the converter slag easily expands and breaks due to free lime, differently from the blast-furnace slag, it is not suitable for use as concrete aggregates. Since the atomized steel slag aggregate has slippery surface and spherical shape, the mortar flowing characteristics improved as the atomized steel slag content increases, without regard to the aggregates coarseness and water/cement ratio. The flow characteristics loss rate of the mortar manufactured from steel slag aggregates was similar to that of the mortar manufactured from washed sand only. The compact strength of the mortar manufactured from coarse PS Ball were larger than that manufactured from washing sand only.

  • PDF

An Experimental Study on the Flow Characteristics of Mortar use Quenched Blast-Furnace Slag (수재사 모릍의 Flow특성에 관한 연구)

  • Yang, Beom-Seok;Lim, Nam-Gi;Lee, Young-Do;Lee, Jong-Kyun;Chung, Lan;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.215-222
    • /
    • 1997
  • Flow experimental on not to be solid mortar which use Quenched Blast-furnace Slag as a fine aggregate was carried out for basic research data about fundamental study of application possibility of Quenched Blast-furnace Slag as a fine aggregate. It gives following result. The substitution rate is inversely proportional to Flow and C/S-rate same that. The relation with W/C-rate augment appear proportional : in case of C/S-rate, 1:3 increasing degree is a half of sand mortar that. Consequencely, Quenched Blast-furnace Slag motar is a counteraction to Flow in as same water content per unit. But suitable substitution rate and C/S-rate influence a little to the mortar consistency. And that reason, if C/S-rate and substitution rate will be regulated when we mix the mortar with quenched Blast-furnace Slag. that will be economic mixture.

  • PDF

Application for Lean Concrete Using Basic Oxygen Furnace-Slag (제강 풍쇄 슬래그 잔골재를 활용한 빈배합콘크리트 적용성 연구)

  • Kim Jin-Cheol;Shim Jae-Won;Jo Kyu-Seong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.177-180
    • /
    • 2004
  • In these days the exhaustion of natural sand has been highlighted with the environmental damages due to excavating sea-sand. Many researchers and engineers have investigated some materials to replace natural sand with, and were interested in using the basic oxygen furnace-slag, the industrial by-product, as fine aggregate. One of the drawbacks to using BOF-slag as a aggregate is to be gradually expanded, and needed the time-consuming process, but some engineers in Korea tackled it recently. In this study, the stabilized BOF-slag was used for lean concrete under the laboratory condition. After testing the several properties - dry density, compressive strength, and young's modulus-, it was found that the dry density was proportionally governed by BOF-slag content and the 7-day compressive-strength was $110\~120\%$ of the natural sand-made. Therefore, BOF-slag is applicable to the lean concrete because they greatly satisfied the required strength, $50kgf/cm^2$.

  • PDF

The Fludity and Compressive Strength Properties of Mortar Using Peronikel Slag Powder and Mixed Slag Aggregates (페로니켈슬래그 미분말 및 혼합슬래그 골재를 사용한 모르타르의 유동성 및 압축강도 특성)

  • Bae, Sunh-Ho;Jung, Yong-Jae;Lee, Jae-In;Kim, Ji-Hwan;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.78-79
    • /
    • 2021
  • This study compared and analyzed the fluidity and compressive strength characteristics of mortar using ferronikel slag powder and mixed slag fine aggregate as part of the study to reduce environmental load and increase recycling rate of industrial by-products.

  • PDF

A Study on the Improvement of the Legal System Related to Electro-Optical Oxidation Slag

  • Kim, Hyeok-Jung;Lee, Young-Woo;Park, Se-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.299-303
    • /
    • 2020
  • Currently, electric furnace oxide slag is mostly used for soil or road use due to its nature. Although electric furnace oxidation slag is an industrial byproduct, not a circulating aggregate, the shortcomings of electric furnace oxidation slag are gradually being resolved due to the development of technology, and it is said that electric furnace oxidation slag is enough to be used as aggregates in light of research and technology conditions outside of Korea. However, there are difficulties in expanding construction and application, given that the current standard for electric furnace oxid slag only defines recycling purposes and does not have specific regulations. Therefore, institutional supplementation is needed to utilize oxidation slag as electricity. In this study, the laws and system related to oxidation slag by electricity are reviewed, laws related to recycled aggregate are examined, and measures for improvement are proposed.