• Title/Summary/Keyword: slab vibration

Search Result 288, Processing Time 0.026 seconds

A Study on the Improvement of the Floor Impact Sound Insulation Performance in Wall Slab Type Apartment (벽식구조 공동주택의 바닥충격음 개선에 대한 연구)

  • Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.73-81
    • /
    • 2012
  • Floor impact sound has been most annoying for years among the noises which are produced in apartment. This study aims to analyze the improvement of floor impact sound by comparing the results of the test which was carried out for the wall slab type apartment and moment frame apartment, and also for the effect of advanced vibration isolation layer. Moment frame structure that main structure consists of column and slab has shown better performance for the heavyweight impact sound comparing with wall slab type structure which is general type in Korea. Stiffness of floor system was raised by reinforcing the stiffness of vibration isolation layer, and it was analyzed how much the floor impact sound performance was improved. The result showed that the reinforced floor had better performance than the existing floor system that uses lightweight porous concrete as vibration isolation material. In addition, a system used wire mesh in mortar showed improvement of floor impact sound than a system without wire mesh, and better performance for the frequency bands lower than 160 Hz which causes floor impact problem in wall slab type apartment.

A Study on Behavior of Concrete Slab Track subjected to High Speed Train Loads (고속열차하중을 받는 슬래브궤도의 동적거동에 관한 연구)

  • 조병완
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.485-492
    • /
    • 2000
  • In the rail facilities the rail track consists of rail tie fastening accessories and bed,. The rail track is largely divided into Ballast Bed Track(BBT) and Concrete Bed Track(CBT) according to the type of bed. In this thesis among Concrete Bed Track slab track which is used for the Japanese high speed railway is a target of this study. Dynamic analysis by using finite element method are performed. where moving rain load is periodic function. Then through parametric study some conclusions are obtained as follow. Cement Asphalt Mortar(CAM) affects contrary mechanical behavior to rail and slab greatly. Therefore change of CAM spring coefficient should be handled with care, For slab thickness thin slab is more profitable to reduction of vibration of rail than thick one but mechanical capacity of slab is deteriorated, Improved structural type is proposed then structural analysis is performed for this one. This type is effective to reduction of vibration of railway system.

  • PDF

Maximum Slab Length of Floating Slab Track (플로팅 슬래브 궤도의 최대길이)

  • Huan, Nguyen Ha;Jang, Seung-Yup;Chung, Won-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.173-180
    • /
    • 2011
  • Recently, many railway stations are built under the railway line in urban area. The passage of railway vehicles generates mechanical vibrations of a wide range of frequency. Thus, it is required to place structural vibration isolation systems to reduce vibration and noise originating from surrounding environments. This study is to investigate the maximum floating slab length based on track/floating slab interaction analyses. Actions to be taken into account include temperature, braking/acceleration, bending of the deck, and creep/shrinkage. The additional rail stress has been chosen for the criterion for the maximum slab length. In addition, further analyses are performed to include the stopper which restrict the in-plane movement of the floating slab track. Several alternatives for stopper positions were thoroughly studied in this study.

  • PDF

A Study on Behavior of Concrete Slab Track subjected to High Speed Train Loads (고속열차하중을 받는 슬래브궤도의 동적거동에 관한 연구)

  • 조병완;김영진;허민회;정태호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.493-598
    • /
    • 2000
  • In the rail facilities, the rail track consists of rail, tie, fastening, accessories and bed. The rail track is largely divided into Ballast Bed Track (BBT) and Concrete Bed Track (CBT) according to the type of bed. In this thesis, among Concrete Bed Track, slab track, which is used for the Japanese high speed railway, is a target of this study. Dynamic analysis by using finite element method are performed where moving train load is periodic function. Then through parametric study, some conclusions are obtained as follows. Cement Asphalt Mortar (CAM) affects contrary mechanical behavior to rail and slab greatly. Therefore, change of CAM spring coefficient should be handled with care. For slab thickness, thin slab is more profitable to reduction of vibration of rail than thick one but mechanical capacity of slab is deteriorated. Improved structural type is proposed, then structural analysis is performed for this one. This type is effective to reduction of vibration of railway system.

  • PDF

A Study on the Optimum Stiffness of Concrete Slab Track (콘크리트 궤도의 최적 탄성에 관한 연구)

  • Kong, Sun-Yong;Kim, Sang-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1085-1090
    • /
    • 2007
  • In recent railway construction, the concrete slab track is getting highlighted as main stream in track type. However, it is the fact that there are different opinions in selection of the optimized spring coefficient of elastic pad. In this study, the performance of vibration reduction in different stiffness of rail pad for ballasted track was compared, and the changes in characteristics, such as static/dynamic deflection of components, vibration acceleration, insertion loss etc., were analysed by using ISI Program for various types of rail fastening system used in concrete slab track. It was concluded that the fastening system with softer pads has shown the better performance of vibration reduction in concrete slab track and the optimized static stiffness has been calculated to 21.1kN/mm for conventional railways, 17.6kN/mm for high-speed railways and 17.8kN/mm for subways.

  • PDF

Static and Dynamic Behavior at Low-Frequency Range of Floating Slab Track Discretely Supported by Rubber Mounts in Real-Scale Laboratory Test (고무 마운트로 이산 지지되는 플로팅 슬래브 궤도의 실모형 실내 실험에서의 정적 및 저주파 대역 동적 거동)

  • Hwang, Sung Ho;Jang, Seung Yup;Kim, Eun;Park, Jin Chul
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.485-497
    • /
    • 2012
  • Recently, with increasing social interests on noise and vibration induced by railway traffic, the application of floating slab track that can efficiently reduce the railway vibration is increasing. In this study, to more accurately understand the dynamic behavior of the floating slab track, a laboratory mock-up test has been performed, and the static and dynamic behaviors at frequency range near the system resonance frequency were explored. Based on the test results, the design of the floating slab track and the structural analysis model used in the design have been verified. The analytic and test results demonstrate that the dominant frequency of the floating slab track occurs at the frequencies between vertical rigid body mode natural frequency and bending mode natural frequency, and the dominant deformation mode is close to the bending mode. This suggests that in the design of the floating slab track, the bending rigidity of the slab and the boundary conditions at slab joints and slab ends should be taken into consideration. Also, the analytic results by the two-dimensional finite element analysis model using Kelvin-Voigt model, such as static and dynamic deflections and force transmissibility, are found in good agreement with the test results, and thus the model used in this study has shown the reliability suitable to be utilized in the design of the floating slab track.

Random vibration analysis of train-slab track-bridge coupling system under earthquakes

  • Zeng, Zhi-Ping;He, Xian-Feng;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Ling-Kun;Xu, Wen-Tao;Lou, Ping
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.1017-1044
    • /
    • 2015
  • This study aimed to investigate the random vibration characteristic of train-slab track-bridge interaction system subjected to both track irregularities and earthquakes by use of pseudo-excitation method (PEM). Each vehicle subsystem was modeled by multibody dynamics. A three-dimensional rail-slab- girder-pier finite element model was created to simulate slab track and bridge subsystem. The equations of motion for the entire system were established based on the constraint condition of no jump between wheel and rail. The random load vectors of equations of motion were formulated by transforming track irregularities and seismic accelerations into a series of deterministic pseudo-excitations according to their respective power spectral density (PSD) functions by means of PEM. The time-dependent PSDs of random vibration responses of the system were obtained by step-by-step integration method, and the corresponding extreme values were estimated based on the first-passage failure criterion. As a case study, an ICE3 high-speed train passing a fifteen-span simply supported girder bridge simultaneously excited by track irregularities and earthquakes is presented. The evaluated extreme values and the PSD characteristic of the random vibration responses of bridge and train are analyzed, and the influences of train speed and track irregularities (without earthquakes) on the random vibration characteristic of bridge and train are discussed.

2-Dimensional Floor Impact Vibration Analysis in Bare Reinforced Concrete Slab Using Finite Element Method (유한 요소법을 이용한 나 슬래브의 2차원 바닥 충격진동 해석)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.604-611
    • /
    • 2005
  • The relationship between floor impact sound and vibration has been studied by field measurements, and the vibration modal characteristics have been analyzed. Vibration levels impacted by a standard heavy-weight impact source have been predicted according to the main design parameters using finite element method. Experimental results show that the dominant frequencies of the heavy impact sounds range below 100 Hz and that they are coincident with natural frequencies of the concrete slab. In addition, simple 2-dimensional finite element models are proposed to substitute 2 types of 3-dimensional models of complicated floor structural slabs those by The analytical result shows that the natural frequencies from first to fifth mode well correspond to those by experiments with an error of less than $12\%$, and acceleration peak value iscoincident with an error of less than $2\%$. Using the finite element model. vibration levels areestimated according to the design Parameters, slab thickness, compressive strength, and as a result, the thickness is revealed as effective to increase natural frequencies by $20\~30\%$ and to reduce the vibration level by 3$\~$4 dB per 30 mm of extra thickness.

Design of floating Slab according to Dynamic Load (동하중을 고려한 플로팅궤도 슬래브 설계)

  • Park, Sung-Jae;Ma, Chang-Nam;Park, Myung-Gyun;Lee, Du-Hwa;Jo, Su-Ik
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.268-272
    • /
    • 2010
  • Recently the construction of railway sections passing the central area of cities and stations under railway lines are increasing, and then it is urgently required to take the countermeasures against the railway vibration and the second-phase noise radiated from it. The most efficient countermeasure, out of technologies developed up to now, is the floating slab track which is the track system isolated from the sub-structure by springs. In other countries, the source technologies for anti-vibration design and vibration isolator - one of key components - have been developed and many installation experiences have been accumulated. However, in Korea, since the system design technology and technologies for key components are not yet developed, the foreign system are being introduced without any adjustment, and the key component, vibration isolator, depends on imports. In this study, floating slab was divided into three spans, $k_{dynamic}$ use by examining reactions and member forces was to ensure safety.

  • PDF