• Title/Summary/Keyword: slab thickness

Search Result 365, Processing Time 0.042 seconds

A Status of floor impact sound insulation by the floor structure (바닥구조에 따른 바닥충격음 차단성능 현황)

  • 이성호;정갑철;정진연;양관섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.513-517
    • /
    • 2004
  • This study aims to evaluate factors of floor structure influencing to the floor impact sound. For this reasons, we measured the vibration of floor and the floor impact sound in moment flame structure. The main results from this study are that slab area and thickness are critical factors of the floor impact sound and aspect ratio slab is not verified in flor impact sound.

  • PDF

Equivalent network analysis of optical strip waveguides (광 스트립 도파로의 등가회로망 해석)

  • 이재승
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.225-229
    • /
    • 1989
  • Taking the normal mode transmission direction perpendicular to the substrate, an alternative equivalent network formulation is developed for the analysis of optical strip waveguides. All kinds of mode couplings between the normal modes are included in this formulation. Compared to the previous equivalent network formulations, the calculations are simplified especially when the thickness of the uniform slab is thin enough such that no well guided modes are available along the uniform slab waveguide.

  • PDF

Propagation of floor impact vibration in a 1:10 scale model of a test structure (1:10 축척 시험동 구조 모형의 바닥충격 진동 전달)

  • Lee, Pyoung-Jik;Yoo, Seung-Yup;Kim, Jae-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1455-1458
    • /
    • 2007
  • Vibration characteristics of concrete slabs were investigated using a 1:10 scale model and finite element method. A 1:10 scale model of a test building with 150 and 200mm slab thicknesses was made of acrylic materials. Modal test was conducted to investigate mode shape and modal frequencies. Results show that the mode shapes of two slabs with different thickness are similar each other, whereas natural frequency is different. Through modal analysis using FEM, it was revealed that both mode shapes and natural frequencies calculated from the FEM model are similar to those of the scale model measurement. It was also found that natural frequencies increased with increment of the slab thickness.

  • PDF

Shear behavior and analytical model of perfobond connectors

  • Zheng, Shuangjie;Liu, Yuqing;Yoda, Teruhiko;Lin, Weiwei
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.71-89
    • /
    • 2016
  • In steel and concrete composite girders, the load transfer between the steel beam and the concrete slab is commonly ensured by installing shear connectors. In this paper, to investigate the nonlinear behavior of perfobond connectors, a total of 60 push-out specimens were fabricated and tested with the variables for the hole diameter, the concrete strength, the thickness of concrete slab, the diameter, strength and existence of perforating rebar, the thickness, height and distance of perfobond ribs. The failure mode and the load-slip behavior of perfobond connectors were obtained. A theoretical model was put forward to express the load-slip relationship. Analytical formulas of shear capacity and peak slip were also proposed considering the interaction between the concrete dowel and the perforating rebar. The calculation results of the proposals agreed well with the experimental values.

A Study on the Sound Insulation Performance Elevation of Floor Structure that use Rubber chip in Apartment House (고무칩을 이용한 공동주택 바닥구조의 차음성능 향상에 관한 연구)

  • 박명길;함진식
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2002.11a
    • /
    • pp.237-332
    • /
    • 2002
  • We constructed ceiling structure and floor structure for elevation of sound insulation performance of concrete slab of apartment house. And, we wished to measure heavy floor impact sound level and light floor impact sound level of these structure. As the result, light floor impact sound level interception performance of concrete slab was measured by thing that construction work of gypsum baud is important. Heavy floor impact sound level interception performance was measured by thing that it is effective that construct to thickness about 30 millimeters on concrete Slav. It was measured effectively that heavy floor impact sound level interception performance constructs rubber chip to thickness about 30 millimeters on concrete Slav.

  • PDF

Noise and Vibration Characteristics of Construction structures in Standard Laboratory (표준실험동의 구조별 소음 진동 특성)

  • Jeong, Young;Yoo, Seung-Yub;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.390-393
    • /
    • 2005
  • In this study, examined heavy-weight floor impact sound to rahmen structure(steel reinforced concrete structure) and bearing-wall structure(box frame type structure) that have slab thickness of 4 form at a standard laboratory through noise and vibration measured. The results of ANSYS modeling of structures was predicted that the nature natural frequency increased according to change of thickness of each slab by finite element analysis, and acceleration value decreased. Rahmen structures compares with bearing-wall structure, nature frequency was predicted low. Measurement results of natural frequency and acceleration level for structures at a standard laboratory, tendency department such as ANSYS modeling appeared. Rahmen structures appeared that reduction effect is less in Acceleration level and heavy impact sound transmission level comparing with bearing-wall structure.

  • PDF

A Evaluation Study on Reduction Method of Floor Impact Noise through Field Test and the Effective Method for Heavy Impact Noise (현장실험을 통한 바닥충격음 저감공법의 성능평가 및 중량충격음 저감 방안)

  • Lee, Byung-Kwon;Bae, Sang-Hwan;Hong, Cheon-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.451-456
    • /
    • 2004
  • In this study, evaluation was carried out for reduction method of floor impact noise through field test and the effective methods for heavy impact noise were proposed. As a field test, impact noise reduction materials such as EPP, EEPS, EVA, PE and so on, did not satisfied the recommandation value at the condition of 150mm thickness concrete slab. The evaluation results for those materials by 'inverse A curve' showed $53\sim55dB$ at heavy impact noise and $53\sim58dB$ at light impact noise. But, two methods proposed by authors were evaluated $47\sim50dB$ at heavy Impact noise and $54\sim58dB$ at light Impact noise on the similar concrete slab thickness.

  • PDF

Simplified Bending Moment Analysis in Slab Bridges supported by Column Type Piers (기둥으로 지지된 슬래브교(橋)의 모멘트 산정(算定)에 관한 연구(硏究))

  • Kim, Young Ihn;Lee, Chae Gyu;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.17-24
    • /
    • 1992
  • It would be much effective that single column type pier is used in concrete slab bridges rather than ${\Pi}$ or gravity type pire is used. To determine the longitudinal benging moment in concrete slab bridges supported by single column type piers, the concept of effective width is applied. By elastic plate theory cooperated with finite element method, the distribution of the longitudinal moment of the slab supported by single column type piers is studied. The main variables are span, width. thickness of the slab, and column section size. The analytical results obtained are summarized and analysed to evaluate the maximum longitudinal negative moment, then a simplified method for calculating the longitudinal moment is proposed.

  • PDF

A Study on the Calculation Method for Flexural Strength of One-way Hollow Slabs (일방향 중공슬래브의 휨강도 산정방법에 관한 연구)

  • Kim, Hyun-Su;Lim, Jun-Ho;Kang, Joo-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.541-548
    • /
    • 2012
  • The hollow slab has advantages that its self-weight does not greatly increase notwithstanding the increase of its thickness and its flexural performance does not significantly degrade in comparison with general reinforced concrete slab. However, the utilization of the hollow slab is currently being underestimated in spite of structural system that enables economic design of building and construction of eco-friendly structure. the significant reasons for this situation is that the method of structural analysis and design for hollow slab is not generalized. In this study, to consider practical compressive zone of hollow slab, the equation for its flexural strength is proposed by the volume of compressive stress block according to neutral axis location in hollow section assumed. Existing estimation method of flexural strength of hollow slab considering only compressive zone above hollow part is evaluated as the most conservative method and the method estimating flexural strength by two alternative cross-section of hollow slab is evaluated as more practical method.

Effect of Horizontal Resistance at Slab Bottom on Behavior of Concrete Slabs-on-Grade under Vertical Loads (지반위에 놓인 콘크리트 슬래브의 수직하중에 대한 슬래브 하부의 수평 저항의 영향 분석)

  • Shim, Jae-Soo;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.141-150
    • /
    • 2005
  • The behavior of the concrete slabs-on-grade considering the horizontal resistance at the slab bottom, which exists due to the shear resistance of the foundation and the friction between the slab and the foundation, has been investigated when the slabs-on-grade are subjected to the vertical load. Analytical formulations have been developed to include the effect of the horizontal resistance at the slab bottom, and the solutions have been obtained in the transformed field domain using the Fourier transform. Finite element formulations have also been developed using the plate bending elements and the flat shell elements. The solutions from the analytical and numerical models have been compared and showed very good agreement. The sensitivity of the horizontal resistance to the stresses of the concrete slab has been investigated with various values of the slab thickness, elastic modulus, and vertical stiffness of the foundation. The analysis results show that the horizontal resistance at the plate bottom can significantly affect the stresses of the slab.

  • PDF