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Equivalent network analysis of optical strip waveguides
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ABSTRACT

Taking the normal mode transmission direction
perpendicular to the substrate, an alternative equiv-
alent network formulation is developed for the anal-
ysis of optical strip waveguides. All kinds of mode
couplings between the normal modes are included in
this formulation. Compared to the previous equiva-
lent network formulations, the calculations are sim-
plified especially when the thickness of the uniform
slab is thin enough such that no well guided modes

are available along the uniform slab waveguide.

In integrated optics, strip waveguides! comprising
the strip loaded waveguide? and the rib waveguide®
are easy to be fabricated and their characteristics are
stable under fabrication errors that are critical to rect-
angular dielectric waveguides. Several approximate
methods!? and numerical methods*® have been re-

ported for their analysis. Recently, equivalent net-

6-13 are published to analyze such

work approaches
structures more simply and accurately. These ap-
proaches regard the whole structure of a strip waveg-
uide as a junction of three asymmetric slab waveguide

regions along the normal mode transmission direction

chosen parallel to the substrate surface. The mode

Aol

S

matching technique is used at the junction planes
which separate the slab waveguide regions. When
there are no well guided modes in the uniform slab
waveguide below the loading strip, the continuous
mode contributions are important and the calcula-
tions are complicated.

In this paper, choosing the transmission direction
normal to the substrate surface, an alternative equiva-
lent network formulation is developed for the analysis
of optical strip waveguides. Our choice of transmis-
sion direction simplifies the calculation since the sim-
plest form of the continuous modes, i.e. plane waves,
is available in the upper and the lower regions to the
central region. The central region continuous modes
may be easily included in the analysis since the sym-
metric slab waveguide admits simple form of mode
functions and has no substrate radiation modes. This
formulation has been well used lately to analyze the
rectangular dielectric waveguides and their arrays.!*
As is apparent, our approach holds its usefulness even
when there are no discrete modes in the uniform slab
waveguide and when the height of the loading strip

becomes large.
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The typical structure of the optical strip
waveguides is shown in Fig. 1 where n,, n;, ny,
and n, are the refractive indices corresponding to
the permittivities, €4, €, €7, and ¢,, respectively.
The electric permittivity, magnetic permeability, and
wavenumber in free space are denoted as ¢,, u,, and
k., respectively. We assume implicit ¢ (time) depen-
dence of the fields to be exp(jwt), where w is the
angular frequency.

Representing ¢ as a propagation constant for a
guided mode of the strip waveguide in Fig. 1, we
assume that all the fields have exp(—j£z) dependence,
There are two types of guided modes in this waveg-
uide, E5, and EY,.' The subscripts u and v de-
note the number of the electric (or magnetic) field
extremum in z and y directions, respectively. The su-
perscripts z and y denote the principal direction of
the electric field.

To provide an appropriate boundary condition
for the fields inside the upper region, however, the
tangential fields at the upper junction plane can not
be given arbitrarily but should be compatible with
each other.!® Also, the tangential fields at the lower
junction plane should be compatible with each other
to provide an appropriate boundary condition for the
fields in the lower region.

In order to concentrate on the upper and lower
region, we use the Equivalence principle!® and replace
the central region with a perfect magnetic conductor.
Both the upper and the lower regions have uniform
unbounded cross sections transverse to the y direction
and the permittivity may be written as ¢(y). For these

regions, we use the network formulation presented in

Chapter 2 of Ref. 16 to find the relations between the

tangential fields at the junction planes.

Network representations tor these regions are
shown in Fig. 2. Perfect magnetic conductor is de-
fined to have zero tangential magnetic fields at its
surfaces and hence the transmission lines are termi-
nated open at the surfaces of the magnetic conduc-
tor. To make the values of the fields outside the mag-
netic conductor unchanged, we introduce electric sur-
face currents on and under the magnetic conductor
with infinitesimal gaps from the magnetic conductor.
Although there should exist magnetic currents also,
their effects are cancelled by the opposite images in-
side the magnetic conductor.

As a result, we obtain the following relations be-
tween the tangential fields at y=! and y = 0:
B = 5 [ a0 lac(aF (o) - 2 (@)helend)

+{a®2f(a) + €2 (a)}X. (ﬂ-‘)l- {1a)

Ey(s,0) = —/ da "':f(i";) {e*2F (a) + @*Zf (@)} (e )

+ at{Zf(a) -
Ee(sn0) = o= [ da =B a2 (o) -

+ {a’ZlE(a) + E"'Z‘"(u)))(,(a,o)l,

E(:,O)-—/

+af{Zf(a) -

Z'”(a)}.l(,(a,l)], (lb)

Z{'(a)}¥<(0,0)
(1¢)
exf(ia;) ({6225 () + a2} ()} He(a,0)

2} (a)} ¥ (a,0)] (14)

where the impedance seen looklng up from the current
source at y = I* is denoted as Z; and the impedance
seen looking down from the current source at y = 0~
is denoted as Z;. Note that ¥.(a,y) and ¥,(a,y) are
the Fourier transform of the tangential magnetic fields
H,(z,y) and H,(z,y) for the  axis, respectively.

In the central region where the permittivity may
be denoted as ¢(z), the tangential fields are expanded
for z # +W /2 in terms of the slab waveguide normal

modes that can be separated into obliquely propagat-
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ing TE (H, E, = 0) and TM (E, H, = 0) modes with

Jg,14

respect to the z direction!” as follows:

Eo(z,y) = Y Va(v)¢n(a),
= ZI;(y)¢:,(z),
’y) Zvn(y)d" (.1: z B,a n d¢ (-'B) ,

Z I/( )y Znl®) n(z)

Hz(xi y)

H,(z,9) = I OLAOTACE
(2
where €,(z) = €(z) /¢, is the relative electric permit-

tivity in the central region and

Jweo dv'* (y)
ﬂ,,z dy ( )

The summations in Eqs. (2) may include continuous

]wl‘o dr (y)

Ill —
3y (v) =

Viy) =

modes when they are discretized in a proper way. 8711

The contents of the following set { ¢/, I', V', ' }
and { ¢", I", V', B” } represent the TE and TM
mode mode function, modal current, modal voitage,

and propagation constant, respectively.

From Egs. (3), we may find the following rela-
tions:
V'(0) = ghsmreqy ') = coslcDI @)},
: = jflwl‘o It oy
V(D) = GRS DD - IO},
19(0) = Iy o),
ﬂ”2 n(g”l) § ’
1" . Jf weo " " vy
ru = ——ﬂ”zsin(g”l) {cos(¢")V"(1) - V"(0)}.

We insert Egs. (2) into Egs. (1) and use the fol-
lowing orthogonal properties of the real mode func-

tions for m # n:714

/ dz ¢, (z)¢n(z) =0, / dz ¢ (z)e (z)pn(z) =0
(5)
Then, we obtain the following linear coupled equa-
tions for arbitrary m~th TE mode modal current and

n-th TM mode modal voltage at y = and y = 0:

VA©) =Y Prmp()1(0) + Y Qma(€)1(0)
,, + }: Rong(£)V,(0),
Z Unp(€)I1(0 +z Vg (E)I2(0

= E ()1, z)+2 Gema (I ()
; +Z

v Z Unp () I (1) +Z Vi€

where Ps, Q’s, R’s, U’s and V’s characterize the

V(o) =
Vi
VIIU

oIy, (8

mode couplings between the slab waveguide modes at
y = 0 and P’s, Q’s, Rs, U’s and V'’s characterize the
mode couplings between the slab waveguide modes at
y=1.

These coupling coefficients can be evaluated from
the numerical integration in Fourier domain except
R’s and R’s that have closed form expressions. Each
integrand for the numerical integration in Fourier do-
main is proportional to the product of the Fourier
transform of one mode function with the complex
conjugate of the Fourier transform of the other cou-
pled mode function. The TM mode functions are of-
ten multiplied by €,.(z). Since the spatial contents
of the slab waveguide mode functions are greater
than the effective thickness!® of the fundamental TEq
mode, the Fourier transform of the mode functions
and, hence, the integrands are appreciable within a
bounded range in Fourier domain.

As a result, we have the same number of equa-
tions (4 ) and (g ) for the number of the unknown
values of the modal currents and voltages at y = {
and y = 0, e.g., eight equations for eight unknowns
when one TE and one TM modes are used in the cen-
tral region. Scanning ¢/k, from n, to max(ng,n.),
we seek all the values of ¢ that satisfy the nontrivial

condition for these modal currents and voltages.
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Dispersion characteristics for the EZ,, modes,
of three different rib waveguide structures (n; = n,)
are calculated and the results are shown in Figs. 3 and
4. Neglecting the slab waveguide TE mode contribu-
tions in the central region, only Egs. (1a) and (1c) are
used in the analysis with ¥;(a,y) = 0. Accordingly,
of all the coupling coefficients, only V’s and V’s are
calculated in the analysis. It is noteworthy that we
have made no restrictions to the polarizations of the
upper and lower region normal mpdes.

Slab waveguide radiation modes are discretized
by introducing perfectly conducting boundaries at the
right and the left to the loading strip at intervals
of two free space wavelengths except for near cutoff
cases.%7 For near cutoff cases, four free space wave-
lengths are found to be sufficient. One may use the
method established by Dagli and Fonstad'!. The
number of the TM slab waveguide normal modes used
is limited to M. In Fig. 3, good convergence is found
for M > 5 and M = 10 is chosen in the analysis.
In Fig. 4, M = 15 is used except for the high fre-
quency range (h > 10) of the second and higher order
rib waveguide modes where M is increased up to 30
to account for the diffraction effects occurring from
the slab waveguide end opened normal to the uni-
form slab. At h = 15, for example, total 20 guided
TM modes plus 10 discretized TM radiation modes
are used for the E3; and E3, modes.

In Fig. 3, when | = h, our results agree with
those of the mode-matching methods done by Yasuura

et al.>?

and those of the scalar wave analysis done
by Koshiba and Suzuki® and, when | = 2h, our re-
sults are in close agreements with those of Koshiba

and Suzuki.? rather than Yasuura et al.5° In Fig. 4,

our results agree well with those of the vectorial wave
analysis done by Koshiba and Suzuki '° and those of

Yasuura et al.’
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Dispersion characteristics for the E; mode of rib

waveguides with W = 2h for | = h and | = 2h.

fv / -’/ ;,///
ﬁrm /‘/ //
b/

koh

Fig. 4
Dispersion characteristics for the EZ | modes ot

a rib waveguide with W = 6h and | = h.

~— the fundamental mode of the

uniform slab waveguide.
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