• 제목/요약/키워드: slab member

검색결과 114건 처리시간 0.022초

인공 신경망을 이용한 플랫 슬래브 주차장 구조물의 등가차량하증계수 (Determination of Equivalent Vehicle Load Factors for Flat Slab Parking Structures Using Artificial Neural Networks)

  • 곽효경;송종영;이기장;이정원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.233-240
    • /
    • 2002
  • In this paper, the effects of vehicle loads on flat slab system are investigated on the basis of the previous studies for beam-girder parking structural system. The influence surfaces of flat slab for typical design section are developed for the purpose of obtaining maximum member forces under vehicle loads. In addition, the equivalent vehicle load factors for flat slab parking structures are suggested using artificial neural network. The network responses are compared with the results by numerical analyses to verify the validation of Levenberg-Marquardt algorithm adopted as training method in this paper. Many parameter studies fur the flat slab structural system show dominant vehicle load effects at the center positive moments in both column and middle strips, like the beam-girder parking structural system.

  • PDF

RC 플랫 플레이트 슬래브의 뚫림전단성능평가 (An Evaluation on Punching Shear Capacity of R/C Flat Plate Slab)

  • 김종근;신성우;양지수;이리형
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.205-213
    • /
    • 2003
  • RC구조물의 기둥과 같은 수직부재에는 고강도 콘크리트를 그리고 슬래브와 같은 수평부재에는 보통강도 콘크리트를 사용할 경우 경제적인 효율성은 물론 구조적인 많은 이점을 얻을 수 있을 것으로 기대된다. 그러나 이 경우 슬래브와 기둥의 강도 및 강성차이로 인한 뚫림전단의 위험이 있어, 본 연구에서는 기둥에는 $fck=460kgf/cm^2$의 고강도 콘크리트를, 슬래브에는 $fck=285kgf/cm^2$의 보통강도 콘크리트를 타설한 실물크기의 플랫 플레이트 슬래브 실험체 6개를 제작하여 뚫림전단성능을 평가하였다. 주요 실험변수는 콘크리트 압축강도, 기둥면으로부터 내민길이, 휨철근 추가에 의한 전단 보강근량이다. 실험결과 고강도 콘크리트 내민길이와 슬래브 휨철근 추가에 의한 전단보강은 최대내력의 증가와 뚫림전단저항성능을 향상시킬 수 있으나, 최대하중 이후 실험체의 거동에는 큰 영향이 없는 것으로 나타났다.

Simplified slab design approach for parking garages with equivalent vehicle load factors

  • Kwak, Hyo-Gyoung;Song, Jong-Young
    • Structural Engineering and Mechanics
    • /
    • 제9권3호
    • /
    • pp.305-321
    • /
    • 2000
  • This paper develops a simplified, but effective, algorithm in obtaining critical slab design moments for parking garages. Maintaining the uniformly distributed load concept generally adopted in the design of building structures, this paper also introduces the equivalent vehicle load factors, which can simulate the vehicle load effects without taking additional sophisticated numerical analyses. After choosing a standard design vehicle of 2.4 tons through the investigation of small to medium vehicles made in Korea, finite element analyses for concentrated wheel loads were conducted by referring to the influence surfaces. Based on the obtained member forces, we determined the equivalent vehicle load factors for slabs, which represent the ratios for forces under vehicle loads to these under uniformly distributed loads. In addition, the relationships between the equivalent vehicle load factors and sectional dimensions were also established by regression, and then used to obtain the proper design moments by vehicle loads. The member forces calculated by the proposed method are compared with the results of four different approaches mentioned in current design codes, with the objective to establish the relative efficiencies of the proposed method.

고온을 받은 포스트텐션 콘크리트 보와 슬래브의 구조성능 연구 (A Study on the Structural Performance of Post Tensioned Concrete Beam and Slab Subjected to High Temperature)

  • 최광호;이중원
    • 콘크리트학회논문집
    • /
    • 제29권2호
    • /
    • pp.217-223
    • /
    • 2017
  • 이 연구는 포스트텐션 콘크리트 부재의 화재에 대한 구조성능 평가기술을 개발하기 위하여, 고온에 노출된 포스트텐션 보와 슬래브 부재의 구조특성과 평가기법을 내화 실험을 통하여 연구하였다. 내화 실험 시 가열은 전기로를 사용하였으며 수열온도를 $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$로 하였다. 이 연구로부터 고온을 받는 강연선은 응력 이완이 발생되고, 냉각되면서 긴장력의 일부 복원이 나타나는 것을 알 수 있었다. 포스트텐션 보와 슬래브 실험체가 각각 목표온도 도달 후 4시간 경과 시 포스트텐션 부재의 강연선의 잔존 긴장력을 살펴보면, 포스트텐션 보는 $400^{\circ}C$에서는 70%, $600^{\circ}C$에서는 10%, $800^{\circ}C$에서는 2%정도로 볼 수 있으며, 포스트텐션 슬래브는 $400^{\circ}C$에서는 94%, $600^{\circ}C$에서는 84.5%, $800^{\circ}C$에서는 62%정도로 나타났다. 상대적으로 포스트텐션 슬래브의 잔존 긴장력 손실이 작았던 이유는 슬래브가 고온에 일면 노출되었고, 강연선의 강도복원이 일어났기 때문으로 여겨졌다. 이 연구로부터 화재가 발생하는 경우 포스트텐션 부재는 강도 및 긴장력의 손실이 발생하고, 보강 시 손실된 내력만큼의 복원설계가 필요함을 확인하였다.

사례분석에 의한 HPC공법의 공사비 분석 (Construction Cost Analysis of HPC Method by PC Construction Project Cases)

  • 노주성;김재엽
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.101-102
    • /
    • 2017
  • This study was carried out as basic study to apply to construction site the HPC method which is being developed. The construction cost of HPC method was analyzed in comparison with conventional method (half slab method). With regard to research method, it was decided that data on construction work carried out by half slab method was analyzed. According to the results of study, in case of being applied to the construction work using a divided column, the number of columns was decreased. So, it was shown that member production cost, and transport and assemblage cost reduced. In case of being applied to construction work using an undivided column, the analysis showed that there was little difference in construction cost. Therefore, the analysis showed that, if HPC construction method was applied to large structure using a large column, the construction cost was reduced to some extent in comparison with conventional half slab method.

  • PDF

지하역타공법용 개방형 슬래브 개발 (Development of Opened Slab Method for Top-Down Construction)

  • 송지윤;임홍철;강두현
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 춘계 학술논문 발표대회
    • /
    • pp.43-46
    • /
    • 2008
  • In Top-Down construction for underground structures, the placement of slab as a horizontal supporting member against lateral earth pressure is an important process in determining construction time and cost. Usually, a reinforced concrete perimeter girder distributes concentrated lateral loads from earth retaining structures such as Cast-in-place (CIP) piles. By combining the function of the R/C perimeter girder and horizontal slabs, the Opened Slab Method is efficient for reducing construction time by elimination of time-consuming formwork for traditional perimeter girders. The structural performance of the method is also discussed in this paper.

  • PDF

비파괴 및 재하시험에 의한 노후 교량의 거동특성 (Behavior Properties of Bridge by Non Destructive and Loading Test)

  • 민정기;김영익
    • 한국농공학회논문집
    • /
    • 제46권1호
    • /
    • pp.61-71
    • /
    • 2004
  • The performance evaluation and deflection of 3 spans concrete simplicity slab bridge analyzed by non-destructive and loading test. Compressive strength of slab and pier appeared in the range of each 353∼366 kgf/$cm^2$ and 152∼215 kgf/$cm^2$ in rebound number test. Also, it appeared that concrete quality of slab was good after performance improvement. The average compressive strength of slab by core picking appeared 229 kg/$cm^2$. In reinforcing bar arrangement test of span and member, it appeared that horizontal and vertical reinforcing bar was arranged to fixed interval. The value of calculation deflection that carried structural analysis with deflection analysis wave in static loading test appeared higher than that of experimental deflection and it appeared that hardness of this bridge was good. Maximum impact factor that estimated from deflection by running speed in dynamic loading test appeared by 0.216 in 10 km/hr running speed.

Design of top concrete slabs of composite space trusses

  • El-Sheikh, Ahmed
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.319-330
    • /
    • 1999
  • The design of composite space trusses is a demanding task that involves taking several decisions on the truss depth, number of panels, member configuration, number of chord layers and concrete slab thickness and grade. The focus in this paper is on the design of top concrete slabs of composite space trusses, and in particular their thickness. Several effects must be considered in the process of designing the slab before an optimum thickness can be chosen. These effects include the inplane forces arising from shear interaction with the steel sub-truss and the flexural. and sheer effects of direct lateral slab loading. They also include a constructional consideration that the thickness must allow for sufficient cover and adequate space for placing the reinforcement. The work presented in this paper shows that the structural requirements on the concrete slab thickness are in many cases insignificant compared with the constructional requirements.

주거용 내화단면 중공슬래브의 휨거동 평가 (A Evaluation on Flexural Behavior for Hollow Core Slab of Fire Resistance section for Residence Building)

  • 부윤섭;배규웅;신상민
    • 한국공간구조학회논문집
    • /
    • 제23권2호
    • /
    • pp.61-68
    • /
    • 2023
  • A two-hour fire-resistance PC hollow slab for residential use was developed to secure structural and fire-resistance performance and to be applied to the general building and apartment housing markets. Compared to the existing hollow slab, in order to secure the same or better structural performance and economic feasibility by reducing the quantity, it was attempted to secure the fire resistance performance by reducing the concrete filling rate in the cross section and adjusting the thickness of the upper and lower flanges by optimizing the hollow shape in the cross section of the slab. For structural performance evaluation, experiments were performed on PC hollow slabs by varying the member thickness and the presence or absence of overlaid concrete, and all of the experimental results showed that the design strength was sufficiently exhibited and that stability during construction was possible. The developed synthetic PC hollow slab has secured fire resistance and residential performance so that it can be applied to all buildings, and it is intended to be immediately applied to the field.

장스팬형 경량복합리브 PSC슬래브 구조공법에 관한 비교분석 및 실험적 연구 (Experimental Study and Comparison of Analysis Results on Structural Method of Prestressed Concrete Slab Using Light Hybrid rib to Long Span)

  • 심남주;오중근
    • 한국건설관리학회논문집
    • /
    • 제18권5호
    • /
    • pp.3-10
    • /
    • 2017
  • HBS 슬래브는 PSC슬래브 상부에 경량체를 설치하고 이웃하고 있는 PSC슬래브의 두 개 리브가 현장 토핑 콘크리트에 의해 형성된 현장 리브와 결합함으로서 동일축상에서 단일 부재로 거동하는 공법이다. 본 연구의 목적은 PSC 슬래브 공법에 관하여 실험적 연구를 통하여 기존 공법과의 성능 비교를 구현 하는 것이다. 본 연구에서는 기존 공법의 한계를 개선하는 공법으로 HBS 슬래브를 개발하였으며 그 우수성을 검증하기 위하여 기존 공법과의 성능 비교를 시행하고자 한다. 기존 공법과의 구조 성능 비교는 HBS 슬래브의 실험적 연구를 통하여 휨성능 및 전단에 대한 구조 성능과 PC보와 HBS 슬래브의 접합 성능을 검토하였으며, 이론적 방법을 통하여 기존 공법과 비교를 수행하고자 한다.