• Title/Summary/Keyword: slab deflection

Search Result 220, Processing Time 0.029 seconds

Prediction of response of reinforced concrete frames exposed to fire

  • Balaji, Aneesha;Muhamed Luquman, K.;Nagarajanb, Praveen;Pillai, T.M. Madhavan
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.105-117
    • /
    • 2016
  • The objective of this work is to study the restraining effect in fire resistance of framed structures and to evaluate the global response of reinforced concrete frames when exposed to fire based on advanced finite element method. To study the response a single portal frame is analyzed. The effect of floor slab on this frame is studied by modeling a beam-column-slab assembly. The evolution of temperature distribution, internal stresses and deformations of the frame subjected to ISO 834 standard fire curve for both the frames are studied. The thermal and structural responses are evaluated and a comparison of results of individual members and entire structure is done. From the study it can be seen that restraining forces has significant influence on both stresses and deflection and overall response of the structure when compared to individual structural member. Among the various structural elements, columns are the critical members in fire and failure of column causes the failure of entire structure. The fire rating of various structural elements of the frame is determined by various failure criteria and is compared with IS456 2000 tabulated fire rating.

Study on the Composite Capacity of Composite Slabs by Deckplate Section Shapes (데크플레이트 단면형상에 따른 합성슬래브의 합성능력에 관한 연구)

  • Ju, Gi-Su;Park, Sung-Moo
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.671-680
    • /
    • 2000
  • This paper provides the results of the study on the structural behavior of the composite metal deck slab system. The experimental study on composite slabs with trapezoidal and inverse-triangle-top-flange deckplate result, it was found that the geometry of the cross-section was more important than any other factors to ensure the composite action of deck slabs. Hence the inverse-triangle-top-flange of closed box was more effective on the shear slip and deflection than the trapezoidal deck of open shape. These results show that the continuing development of composite deck plate must consider importantly the geometry of the deck. The experimental results were compared with established formulas and were analysed to advance a theory on composite slabs using deckplates.

  • PDF

An Experimental Study of SL Shear Reinforcement for Reinforced Concrete Flat Plate Slab (철근콘크리트 무량판 슬래브의 일체형 SL(Shear Ladder) 전단보강재에 관한 실험적 연구)

  • Woo, Jong-Yeol;Hong, Seong-Wook;Park, Seung-Hwan;Kim, Shin;Shin, Chan-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.53-56
    • /
    • 2011
  • This study is concerned with the SL shear reinforcement that it can be installed easily in filed as product at the factory and seismic performance can be achieved. The method of study is as follows. first, we researched constructability and economy of existing method. Secondly, we made specimen and were examined structural performance tests in order to verify the performance of the shear reinforcement. Shear strength of HILL01-HILL03 specimen applied to SL shear reinforcement increased about 5-14% when compared with the applied shear stirrup reinforcing existing specimens. Also, the amount of the maximum deflection of the central sub-section of HILL01-HILL03 specimen applied to SL shear reinforcement decreased about 41-42% when compared with the applied shear stirrup reinforcing existing specimens. As a result, developed SL shear reinforcement increased in shear strength and stiffness of reinforcement, structural safety is judged to be increased.

  • PDF

Flexural Behavior of Continuous Composite Bridges with Precast Concrete Decks

  • Chung, Chul-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.625-633
    • /
    • 2003
  • For the construction of open-topped steel box girder bridges, prefabricated concrete slab could offer several advantages over cast-in-situ deck including good quality control, fast construction, and elimination of the formwork for concrete slab casting. However, precast decks without reinforcements at transverse joints between precast slabs should be designed to prevent the initiation of cracking at the joints, because the performance of the joint is especially crucial for the integrity of a structural system. Several prestressing methods are available to introduce proper compression at the joints, such as internal tendons, external tendons and support lowering after shear connection. In this paper, experimental results from a continuous composite bridge model with precast decks are presented. Internal tendons and external tendons were used to prevent cracking at the joints. Judging from the tests, precast decks in negative moment regions have the whole contribution to the flexural stiffness of composite section under service loads if appropriate prestressing is introduced. The validity of the calculation of a cracking load fur serviceability was presented by comparing an observed cracking load and the calculated value. Flexural behavior of the continuous composite beam with external prestressing before and after cracking was discussed by using the deflection and strain data.

Simple Method of Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Support (탄성지지된 3경간 철근콘크리트 교량의 간단한 진동해석법)

  • Kim, Duk-Hyun;Han, Bong-Koo
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.23-28
    • /
    • 2004
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports is presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control. The concrete slab is considered as a special orthotropic plate. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper, The influence of the modulus of the foundation and $D_{22}$, $D_{12}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.

Noise and Vibration Solutions Considering Stability Effects for High-Speed Rail ChonAn Station in Korea (한국고속철도 천안역사에 대한 소음 및 진동영향 연구)

  • Kweon Young-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.848-853
    • /
    • 2005
  • The objective of this paper is to address to the providing an adequate noise and vibration solution, required for High Speed Rail while maintaining the stability criteria of the ChonAn station structure, the first constructed in Korean High Speed Railway. The significant acoustic pressure level will be induced by the high speed trains passing-by. Therefore, the high level study of this case is necessary. The acoustic pressure level of 85 dB(A) inside the ChonAn station is expected, and the spaces below concrete slab are not suitable for commercial purpose, thus installation of filtering systems (spring boxes containing viscous dampers, ballast mats and acoustic shield) are provided to reduce the effect of the noise and vibration to acceptable level of 55 dB(A). But, a major drawback of application of the previously conducted experimental results was that the actual effect of installation of filtering system was never been validated. Therefore, the acquisition of noise and vibration on the present structure were obtained and compared to the computer simulations. These predicted the behavior of the station reasonably well. Also, the installation of filtering systems gave the superior reduction on noise and vibration. This application is successfully adapted without scarifying stability criteria related to the structural stability including excessive deformations or displacements. Three traffic operation safety limits: deck vertical acceleration, deflection of the structure, and longitudinal displacement of the slab were satisfactory.

  • PDF

Short- and long-term analyses of composite beams with partial interaction stiffened by a longitudinal plate

  • Ranzi, Gianluca
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.237-255
    • /
    • 2006
  • This paper presents a novel analytical formulation for the analysis of composite beams with partial shear interaction stiffened by a bolted longitudinal plate accounting for time effects, such as creep and shrinkage. The model is derived by means of the principle of virtual work using a displacement-based formulation. The particularity of this approach is that the partial interaction behaviour is assumed to exist between the top slab and the joist as well as between the joist and the bolted longitudinal stiffening plate, therefore leading to a three-layered structural representation. For this purpose, a novel finite element is derived and presented. Its accuracy is validated based on short-and long-term analyses for the particular cases of full shear interaction and partial shear interaction of two layers for which solutions in closed form are available in the literature. A parametric study is carried out considering different stiffening arrangements to investigate the influence on the short-and long-term behaviour of the composite beam of the shear connection stiffness between the concrete slab and the steel joist, the stiffness of the plate-to-beam connection, the properties of the longitudinal plate and the concrete properties. The values of the deflection obtained from the finite element simulations are compared against those calculated using the effective flexural rigidity in accordance with EC5 guidelines for the behaviour of elastic multi-layered beams with flexible connection and it is shown how the latter well predicts the structural response. The proposed numerical examples highlight the ease of use of the proposed approach in determining the effectiveness of different retrofitting solutions at service conditions.

Experimental study on fatigue behavior of innovative hollow composite bridge slabs

  • Yang Chen;Zhaowei Jiang;Qing Xu;Chong Ren
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.745-757
    • /
    • 2023
  • In order to study the fatigue performance of the flat steel plate-lightweight aggregate concrete hollow composite bridge slab subjected to fatigue load, both static test on two specimens and fatigue test on six specimens were conducted. The effects of the arrangement of the steel pipes, the amplitude of the fatigue load and the upper limit as well as lower limit of fatigue load on failure performance were investigated. Besides, for specimens in fatigue test, strains of the concrete, residual deflection, bending stiffness, residual bearing capacity and dynamic response were analyzed. Test results showed that the specimens failed in the fracture of the bottom flat steel plate regardless of the arrangement of the steel pipes. Moreover, the fatigue loading cycles of composite slab were mainly controlled by the amplitude of the fatigue load, but the influences of upper limit and lower limit of fatigue load on fatigue life was slight. The fatigue life of the composite bridge slabs can be determined by the fatigue strength of bottom flat steel plate, which can be calculated by the method of allowable stress amplitude in steel structure design code.

A Evaluation of Fire Behavior According to Member Thickness of Precast Prestressed Hollow Core Slab of Fire Resistance Section (프리캐스트 프리스트레스트 내화단면 중공슬래브의 부재두께에 따른 화재거동평가 )

  • Yoon-Seob Boo;Kyu-Woong Bae;Sang-Min Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • At construction sites, interest in the production of precast materials is increasing due to off-site conditions due to changes in construction site conditions due to increased labor costs and the Act on the Punishment of Serious Accidents. In particular, the precast prestressed hollow slab has a hollow shape in the cross section, so structural performance is secured by reducing weight and controlling deflection through stranded wires. With the application of structural standards, the urgency of securing fire resistance performance is emerging. In this study, a fire-resistance cross section was developed by reducing the concrete filling rate in the cross section and improving the upper and lower flange shapes by optimizing the hollow shape in the cross section of the slab to have the same or better structural performance and economic efficiency compared to the existing hollow slab. The PC hollow slab to which this was applied was subjected to a two-hour fire resistance test using the cross-sectional thickness as a variable, and as a result of the test, fire resistance performance (load bearing capacity, heat shielding property, flame retardance property) was secured. Based on the experimental results, it is determined that fire resistance modeling can be established through numerical analysis simulation, and prediction of fire resistance analysis is possible according to the change of the cross-sectional shape in the future.

A Study on the Applicability of Partial Post-Tension Slab with Top Anchorage System (상향긴장식 부분PT를 사용한 슬래브의 적용성 분석)

  • Lee, Deuck-Hang;Kim, Kang-Su;Kim, Chang-Hyuk;Kim, Sang-Sik;Kim, Yong-Nam;Chung, Kwang-Ryang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.309-312
    • /
    • 2008
  • Reinforced concrete (RC) structures have been most widely used because of the economic efficiency. However, it is very weak to tensile stresses and difficult to control deflection due to the heavy self-weight of concrete. Although it is generally known that prestressed concrete structures can be the most effective to overcome the demerit of RC structures, its application is very seldom in domestic construction for the difficult onsite circumstances. The post-tension method, which is well fit for buildings that are mostly indeterminate structures and beneficial for monolithic construction, has been introduced to just a few building construction. The application of full PT method into entire spans makes construction engineers feel very difficult due to the lack of current condition in construction fields. Therefore, this study proposed the partially applied PT method as an alternative, which can improve the deflection control of RC structures and reduce the construction difficulty by applying the PT method in a part of span length as needed, and analyzed its characteristics of structural behavior. In this study, the top anchorage was applied to improve the applicability of partial PT method, and the analysis results of slab behavior were compared to the measured values obtained from the post-tensioned slab constructed by the partial PT method.

  • PDF