• 제목/요약/키워드: slab Method

Search Result 1,080, Processing Time 0.038 seconds

A Study on the Safety and Usability of University Dormitory Buildings (대학 기숙사 건물의 안전성 및 사용성 평가 연구)

  • Chae, Kyoung-Hun;Heo, Seok-Jae;Hur, Moo-Won
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.26 no.2
    • /
    • pp.3-10
    • /
    • 2019
  • This study evaluated the vibration use and safety of students living in the dormitories on the 12th and 14th floors by feeling uncomfortable. The measurement method was to measure the acceleration due to free vibration and single - person walking. The slab stiffness was then calculated, and the usability and safety were compared according to international standards. The natural frequency of the slab was 6.8 Hz. The natural frequency of a typical slab is around 15Hz. Therefore, the evaluation slab is judged as a flexible floor structure. It is considered that there is a high possibility of resonance in the middle of daily life because of low natural frequency and near harmonic component of walking vibration. As a result, the RMS acceleration level is within the tolerance range defined by ISO 10137 code, but the 13th floor exceeds the reference limit, so that a sensitive person could detect the vibration somewhat in the lying position.

Structural Performance of Column-Slab Connection in Flat Plate System Using High Strength Concrete (고강도 콘크리트를 사용한 플랫 플레이트 구조의 기둥·슬래브 접합부 구조성능)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.97-105
    • /
    • 2006
  • The reinforced concrete flat plate system provides architectural flexibility, clear space, reduced building height, simple formwork, which consequently enhance constructibility. One of the serious problem in the flat plate system is brittle punching shear failure due to transfer of shear force and unbalanced moments in column-slab connection. Since the use of high strength concrete recently has become in practice for reinforced concrete structures, it is highly desired to establish the structural design method for flat plate construction using high strength concrete. In this paper, interior column-slab connection constructed with high strength concrete were tested under lateral and gravity loads to evaluate their strength and behavior. The test parameters were slab reinforcement ratio and the gravity load levels.

Study on mechanical behaviors of cable-supported ribbed beam composite slab structure during construction phase

  • Qiao, W.T.;An, Q.;Wang, D.;Zhao, M.S.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.177-194
    • /
    • 2016
  • The cable-supported ribbed beam composite slab structure (CBS) is a new type of pre-stressed hybrid structure. The standard construction method of CBS including five steps and two key phases are proposed in this paper. The theoretical analysis and experimental research on a 1:5 scaled model were carried out. First, the tensioning construction method based on deformation control was applied to pre-stress the cables. The research results indicate that the actual tensile force applied to the cable is slightly larger than the theoretical value, and the error is about 6.8%. Subsequently, three support dismantling schemes are discussed. Scheme one indicates that each span of CBS has certain level of mechanical independence such that the construction of a span is not significantly affected by the adjacent spans. It is shown that dismantling from the middle to the ends is an optimal support dismantling method. The experimental research also indicates that by using this method, the CBS behaves identically with the numerical analysis results during the construction and service.

Field Application of Surface Insulation Curing Method to Cold Weather Concreting (한중콘크리트의 현장 표면단열 양생공법 시공사례 연구)

  • Kim Jong-Back;Lim Choon-Goun;Han Min-Cheol;Kim Seoung-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.25-28
    • /
    • 2005
  • This study investigates the field application of surface insulation curing method, which combined double layer bubble sheet(DBS) and thick-curing-material(TCM) for cold weather concreting. According to the test, deck slab, curing only upper section with DBS and TCM, does not make big different temperature history with that, curing both upper and bottom section during daily average temperature 6.5t. It is concluded that combination of DBS and TCM in only upper section can be safely cured in early period of time during cold water concreting. The field test was carried out with this favourable data. The upper deck slab was insulated by combination of DBS and TCM, and the construction was surrounded by tent. in order to protect from outside wind. The test result shows that the lowest temperature of deck slab indicated 6$ ^{circ}C $. It demonstrated that this curing method can resist early frost and save construction cost in the side of management and saving labor cost, compared with previous method. In addition, the column specimen, combined both form and bubble board, exhibited favorable temperature history, due to internal hydration heat insulation effect.

  • PDF

Vibration analysis of special orthortopic plate with free edges supported on elastic foundation and with a pair of opposite edges under axial forces (탄성기초에 지지되고 양단 축하중을 받는 특별직교 이방성 판의 진동해석)

  • 김덕현;원치문;정경일;박정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.327-334
    • /
    • 1998
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and toll.or structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the special orthotropic plates with free edges supported on elastic foundation and with a pair of opposite edges under axial forces is presented. Such plates represent the concrete highway slab and hybrid composite pavement of bridges. The reinforced concrete slab can be assumed as a special orthotropic plate, as a close approximation. The highway slab is supported on elastic foundation, with free boundaries. Sometimes, the pair of edges perpendicular to the traffic direction may be subject to the axial forces. The plate is subject to the concentrated load/loads, in the form of traffic loads, or the test equipments. Any method nay be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation, the aspect ratio of the plate, and the magnitudes of the axial forces and the concentrated attached mass on the plate, on the natural frequency is thoroughly studied.

  • PDF

A Study on the Simplified Presumption Method for the Prediction of Cooling and Heating Performance in a Fresh Air Load Reduction System by Using Geothermal Energy (지열을 이용한 외기부하저감시스템의 냉각 및 가열효과 예측을 위한 간이추정법에 관한 연구)

  • Son, Won-Tug;Park, Kyung-Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.628-634
    • /
    • 2010
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we proposed a simplified presumption method for the prediction of cooling and heating performance in the system. In conclusion the proposed method has been verified by comparing with the calculated value of the numerical analysis model by using nonlinear two-dimension hygroscopic question.

A Modified Equivalent Frame Model for Flat Plate Slabs Under Combined Lateral and Gravity Loads (조합하중시의 플랫 플레이트 슬래브 시스템에 대한 수정된 등가골조 모델)

  • Oh, Seung-Yong;Park, Young-Mi;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.369-372
    • /
    • 2006
  • Flat plate slab systems have been commonly used as a gravity force resisting systems, which should be constructed with lateral force resisting systems such as shear walls and moment resisting frame. ACI 318(2005) allows the Direct design method, the equivalent frame method (ACI-EFM) under gravity loads and the finite-element models, effective beam width models and equivalent frame models under lateral loads. ACI-EFM can be used for gravity loads as well as lateral loads analysis. But the method may not predict the behavior of flat plate slabs under lateral loads. Thus Previous study developed a Modified equivalent frame method(Modified-EFM) which could give more precise answer for flat plate slab under lateral loads. This study is to verified the accuracy of a Modified-EFM under combined lateral and gravity loads. The accuracy of this model is verified by comparing the results using the Modified-EFM with the results of finite element analysis. For this purpose, 7 story building is considered. The analysis results of other existing models are included. The analysis results show that Modified-EFM produces comparable drift and slab internal moments with those obtained from finite element analysis.

  • PDF

Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients

  • Ding, Faxing;Ding, Hu;He, Chang;Wang, Liping;Lyu, Fei
    • Computers and Concrete
    • /
    • v.29 no.3
    • /
    • pp.127-144
    • /
    • 2022
  • To investigate the flexural stiffness of the steel-composite beam, the contributions of the concrete slab and steel beam to the stiffness were considered separately. The method for flexural stiffness of the composite beam, considering the stiffness of the concrete slab and steel beam, was proposed in this paper. In addition, finite element models of the composite beams were established and validated. Parametric analyses were carried out to study the effects of different parameters on the neutral axis distance reduction factors of the concrete slab and steel beam. Afterward, the neutral axis distance reduction factors were fitted, and the stiffness combination coefficients of the two parts were solved. Based on the stiffness combination coefficients, the flexural stiffness of the composite beam can be obtained. The proposed method was validated by the tested and analyzed results. The method has a simple form and high accuracy in predicting the flexural stiffness of the steel-concrete composite beam, even though the degree of shear connection is less than 0.5.

A Study of the Advanced Composite Material Slab for Light Weight of Tall Building (초고층빌딩 경량화를 위한 복합신소재 슬래브에 관한 연구)

  • Han, Bong-Koo
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • For each construction material used, there is certain theoretical limit in sizes. For tall building construction, the reduction in slab weight is the first step to take in order to break such size limits. In this paper, the feasibility of such objective is proven and given by numerical analysis result. For a typical building slab, both concrete and advanced composite sandwich panels are considered. The concrete slab is treated as a special orthotropic plate to obtain more accurate result. For each panel, the deflection under the dead and live loads is compared, since both tensile and compressive strengths of the composites are far more higher than those of concrete. All types of sandwich panels considered, except one case, have self-weights less than one tenth of that of the reinforced concrete slab, with deflections less than that of the reinforced concrete slab.

Interface Shear Strength in Half Precast Concrete Slab (반두께 P.C. 슬래브의 면내전단내력에 관한 연구)

  • 이광수;김대근;최종수;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.161-168
    • /
    • 1994
  • Half-P.C. slab system is the composite structural system which utilizes precast concrete for lower portion and cast in situ concrete for upper portion slab. When the composite slab using Half P.C. slab is deformed by flexural moment, horizontal shear happened at the interface between Half P.C. slab and topping concrete. To resist horizontal shear strength a scratch method has tried. To determine ultimate interface shear strength, shear stress, and shear coefficient, high and normal strength concrete are used for topping concrete. Major variables are compressive strength of topping concrete with or without shear reinforcement, quantitative roughness of the P.C. :surface and tie or untie of the stud with welded deformed wire fabric in the P.C. member. The Icross sectional area on joints is 3,200 $cm^2$ in all specimens. Test results showed that shear stress increased, as the depth of the quantitative roughness increased. The horizontal shear strength could be resisted with safe by the quantitative roughness without shear tie. A shear coefficient determinant equation is proposed such that K = 0.025918 + 0.0068894$\cdot$R – 0.000182354${\cdot}R^2$