• Title/Summary/Keyword: skin scattering

Search Result 68, Processing Time 0.026 seconds

Effect of particle size of TiO2 and octyl-methoxycinnamate (OMC) content on sun protection factor (SPF)

  • Choi, Jaeyeong;Kim, Suyeon;Kim, Woonjung;Eum, Chul Hun;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.159-166
    • /
    • 2017
  • Exposure to UV light, i.e., UV-A (320-400 nm) or UV-B (290-320 nm) radiation, can cause skin cancer. Titanium dioxide ($TiO_2$) effectively disperses UV light. Therefore, it is used as a physical UV filter in many UV light blockers. Usually, the $TiO_2$ content in commercialized UV blockers is 25 % at most. To block UV-B, a chemical UV blocker, octyl-methoxy cinnamate (OMC) is used. OMC is commonly used in combination with $TiO_2$. In this study, $TiO_2$ and OMC were mixed in different proportions to produce UV blockers with different compositions. Also the changes in the sun protection factor (SPF) based on the composition and $TiO_2$ particle sizes were investigated. In order to analyze the $TiO_2$ particle size, dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) were used. The results showed that the SPF was influenced by the proportion of $TiO_2$ and OMC, where the proportion of $TiO_2$ induced a more significant influence. In addition, changes in the $TiO_2$ particle size based on the proportion of OMC were observed.

Application of Nanoparticles Derived from Artemisia princeps for Cosmetic Products (쑥으로부터 유래된 나노입자의 화장품 제품 응용)

  • Jung, So Young;Kang, Hae-Ran;Yoo, Han Jun;Choi, Hyeong;Heo, Hyojin;Cha, Byungsun;Brito, Sofia;Lee, So Min;Yeo, Hye Lim;Kang, Seo Jeong;Lee, Dae Yeop;Kwak, Byeong-Mun;Lee, Mi-Gi;Bin, Bum-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.3
    • /
    • pp.265-271
    • /
    • 2021
  • Nanoparticles are substances that are smaller in size and smaller than cells that make up the skin. Therefore, they are very suitable as mediators for transmitting drugs or genes across cell membranes, and also deliver specific ingredients into the skin.In this study, nanoparticles were extracted from mugwort and particles of around 100 nm were obtained through dynamic light scattering (DLS), and the results of concentration-dependent enhancement of cell viability in fibroblasts were obtained through MTT assay. In addition, it was confirmed that the COL1A1 mRNA expression level was increased and the IL-6 mRNA expression level was decreased through the quantitative real-time PCR analysis method. Moreover, as these nanoparticles were confirmed to be stable, they can be applied not only to cell experiments but also to cosmetic formulations. While the demand for plant-derived ingredients continues to increase, excluding chemical ingredients from the recent cosmetics industry trend, there is a limitation in that there are few research results suggesting the application field of plant-derived nanoparticles. Therefore, in order to overcome the limitations of the cosmetic industry at the present time, the results obtained in this study present nanoparticles derived from Artemisia princeps (NDAP) as a highly functional cosmetic material.

Evaluation of dose variation at the vertex during Total Skin Electron Beam (전신 피부 전자선 조사(TSEB)시 두정부(Vertex)에서의 선량 변화 평가)

  • Jeon Byeong-Chul;An Seung-Kwon;Lee Sang-Gyu;Kim Joo-Ho;Cho Kwang-Hwan;Cho Jung-Hee;Park Jae-Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.112-116
    • /
    • 2000
  • Purpose : The vertex scalp is always tangentially irradiated during total skin electron beam(TSEB) This study was discuss to the dose distribution at the vertex scalp and to evaluate the use of an electron reflector. positioned above the head as a means of improving the dose uniformity. Methods and Materials Vetex dosimetry was performed using ion-chamber and TLD. Measurements were 6 MeV electron beam obtained by placing an acrylic beam speller in the beam line. Studies were performed to investigate the effect of electron scattering on vertex dose when a lead reflector $40{\times}40cm$ in area, was positioned above the phantom. Results : The surface dose at the vertex, in the without of the reflector was found to be less than $37.8\%$ of the skin dose. Use of the lead reflector increased this value to $62.2\%$ for the 6 MeV beam. Conclusion : The vertex may be significantly under-dosed using standard techniques for total skin electron beam. Use of an electron reflector improves the dose uniformity at the vertex and may reduce or eliminate the need for supplemental irradiation.

  • PDF

Nano Capsulization of Ceramide and the Efficacy of Atopy Skin (나노세라마이드의 캡슐화와 아토피 피부의 치료)

  • Zhoh Choon-Koo;Kim In-Young;Lee Hee-Seob
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.419-426
    • /
    • 2004
  • The nano-ceramide capsulation is a technique that capsulates ceramide III and tocopheryl linoleate at the mono-vesicle to act on the horny layer in skin. In this technique, $0.5{\~}5.0\;wt\%$ of hydrogenated lecithin and $0.01{\~}2.00\;wt\%$ of lysolecithin are used as the membrane-strengthen agents of the mono-vesicle and $5.0{\~}10.0\;wt\%$ of propylene glycol and $5.0{\~}10.0\;wt\%$ of ethyl alcohol are used as solvents. Active ingredients such ceramide III and tocopheryl linoleate are utilized to enhance the moisturizing efficacy and treat atopy skin. These materials do not contain synthetic emulsifiers. The optimal conditions or nano-ceramide capsulation are such that particles pass Microfludizdizer 3 times at 1,000 bar and $60{\~}70^{\circ}C$ and pH of nano capsules is $5.8{\pm}0.5.$ The average size of particles is $63.1{\pm}7.34\;nm$ showing lucid state like water by the laser light scattering. A zeta potential value is $-55.1\pm0.84\;mV.$ Through clinical tests, the moisturizing effect (in-vivo, n=8, p-value<0.05) showed $21.15\%$ of improvement comparison to comparison-samples and $36.31\%$ of improvement compared to the state before treatment. Moreover, the effectiveness of atopy skin showed positive reaction from 10 volunteers.

Physical Characteristic and In vitro Transdermal Delivery of PCL-b-PEG Micelles Containing Quercetin and Rutin (Quercetin과 Rutin을 함유하는 PCL-b-PEG 고분자 미셀의 특성 및 피부 흡수에 관한 In vitro 연구)

  • Lim, Gyu-Nam;Kim, Sun-Young;Kim, Min-Ji;Park, Soo-Nam
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.420-426
    • /
    • 2012
  • In this study, we prepared polymer micelles containing quercetin and rutin, known as antioxidants, using poly(${\varepsilon}$-caprolactone)-b-poly(ethylene glycol), and evaluated in vitro skin permeation of the active materials. Quercetin and rutin loaded micelles were characterized by DSC (differential scanning calorimetry), HPLC (high performance liquid chromatography) and DLS (dynamic light scattering) measurements. The particle size of the polymer micelles increased in a concentration dependent manner (0.5~2.0% PCL-b-PEG). The Zeta potential of quercetin and rutin loaded micelles remained constant. To evaluate the skin penetration of PCL-b-PEG micelles, Franz diffusion cell experiment was performed. The aqueous solutions of quercetin and rutin were used as the control groups. Quercetin and rutin loaded PCL-b-PEG micelles showed more efficient skin permeation than the control groups. Safety assessment (patch test) of quercetin and rutin loaded PCL-b-PEG micelles on skin was performed to test application possibility of the polymer micelles to cosmetics. Any adverse symptoms were not observed.

Study on frequency response of implantable microphone and vibrating transducer for the gain compensation of implantable middle ear hearing aid (이식형 마이크로폰과 진동체를 갖는 인공중이의 이득 보상을 위한 주파수 특성 고찰)

  • Jung, Eui-Sung;Seong, Ki-Woong;Lim, Hyung-Gyu;Lee, Jang-Woo;Kim, Dong-Wook;Lee, Jyung-Hyun;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.361-368
    • /
    • 2010
  • ACROSS device, which is composed of an implantable microphone, a signal processor, and a vibrating transducer, is a fullyimplantable middle ear hearing device(F-IMEHD) for the recovery of patients with hearing loss. And since a microphone is implanted under skin and tissue at the temporal bones, the amplitude of the sound wave is attenuated by absorption and scattering. And the vibrating transducer attached to the ossicular chain caused also the different displacement from characteristic of the stapes. For the gain control of auditory signals, most of implantable hearing devices with the digital audio signal processor still apply to fitting rules of conventional hearing aid without regard to the effect of the implanted microphone and the vibrating transducer. So it should be taken into account the effect of the implantable microphone and the vibrating transducer to use the conventional audio fitting rule. The aim of this study was to measure gain characteristics caused by the implanted microphone and the vibrating transducer attached to the ossicle chains for the gain compensation of ACROSS device. Differential floating mass transducers (DFMT) of ACROSS device were clipped on four cadaver temporal bones. And after placing the DFMT on them, displacements of the ossicle chain with the DFMT operated by 1 $mA_{peak}$ current was measured using laser Doppler vibrometer. And the sensitivity of microphones under the sampled pig skin and the skin of 3 rat back were measured by stimulus of pure tones in frequency from 0.1 to 8.9 kHz. And we confirmed that the microphone implanted under skin showed poorer frequency response in the acoustic high-frequency band than it in the low- to mid- frequency band, and the resonant frequency of the stapes vibration was changed by attaching the DFMT on the incus, the displacement of the DFMT driven with 1 $mA_{rms}$ was higher by the amount of about 20 dB than that of cadaver's stapes driven by the sound presssure of 94 dB SPL in resonance frequency range.

Dose Characteristics of Total-Skin Electron-Beam Irradiation with Six-Dual Electron Fields (Six-Dual 전자선 조사면에 의한 전신 피부 조사의 선량 특성)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.337-345
    • /
    • 1998
  • Purpose : To obtain the uniform dose at limited depth to entire surface of the body, the dose characteristics of degraded electron beam of the large target-skin distance and the dose distribution of the six-dual electron fields were investigated Materials and Method : The experimental dose distributions included the depth dose curve, spatial dose and attenuated electron beam were determined with 300 cm of target-skin distance (TSD) and full collimator size (35*35 $cm^2$ on TSD 100 cm) in 4 MeV electron beam energy. Actual collimated field size of 105 cm * 105 cm at the distance of 300 cm could include entire hemibody. A patient was standing on step board with hands up and holding the pole to stabilize his/her positions for the six-dual fields technique. As a scatter-degrader, 0.5 cm of acrylic plate was inserted at 20 cm from the body surface on the electron beam path to induce ray scattering and to increase the skin dose. Results : The full width at half maximum(FWHM) of dose profile was 130 cm in large field of 105*105 $cm^2$ The width of $100\pm10\%$ of the resultant dose from two adjacent fields which were separated at 25 cm from field edge for obtaining the dose unifomity was extended to 186 cm. The depth of maximum dose lies at 5 mm and the 80$\%$ depth dose lies between 7 and 8 mm for the degraded electron beam by using the 0.5 cm thickness of acrylic absorber. Total skin electron beam irradiation (TSEBI) was carried out using the six dual fields has been developed at Stanford University. The dose distribution in TSEBI showed relatively uniform around the flat region of skin except the protruding and deeply curvatured portion of the body, which showed excess of dose at the former and less dose at the latter. Conclusion : The percent depth dose, profile curves and superimposed dose distribution were investigated using the degraded electron beam through the beam absorber. The dose distribution obtained by experiments of TSEBI showed within$\pm10\%$ difference except the protruding area of skin which needs a shield and deeply curvatured region of skin which needs boosting dose.

  • PDF

Measurement of electron density of atmospheric pressure Ne plasma jet by laser heterodyne Interferometer with voltage

  • Lim, Jun Sup;Hong, Young June;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.140.1-140.1
    • /
    • 2015
  • Currently, As Plasma application is expanded to the industrial and medical industrial, Low temperature plasma characteristics became important. Especially in Medical industrial, Low temperature plasma directly adapted to human skin, so their plasma parameter is important. One of the plasma parameters is electron density, some kinds of method to measuring electron density are Thomson scattering spectroscopy and Millimeter-wave transmission measurement. But most methods is expensive to composed of experiment system. Heterodyne interferometer system is cheap and simple to setting up, So we tried to measuring electron density by Laser heterodyne interferometer. To measuring electron density at atmospheric pressure, we need to obtain the phase shift signal. And we use a heterodyne interferometer. Our guiding laser is Helium-Neon laser which generated 632 nm laser. We set up to chopper which can make a laser signal like a pulse. Chopper can make a 4 kHz chopping. We used Needle jet as Ne plasma sources. Interference pattern is changed by refractive index of electron density. As this refractive index change, phase shift was occurred. Electron density is changed from Townsend discharge's electron bombardment, so we observed phenomena and calculated phase shift. Finally, we measured electron density by refractive index and electron density relationship. The calculated electron density value is approximately 1015~1016 cm-3. And we studied electron density value with voltage.

  • PDF

THERMAL DIFFUSION AND RADIATION EFFECTS ON UNSTEADY MHD FREE CONVECTION HEAT AND MASS TRANSFER FLOW PAST A LINEARLY ACCELERATED VERTICAL POROUS PLATE WITH VARIABLE TEMPERATURE AND MASS DIFFUSION

  • Venkateswarlu, M.;Ramana Reddy, G.V.;Lakshmi, D.V.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.257-268
    • /
    • 2014
  • The objective of the present study is to investigate thermal diffusion and radiation effects on unsteady MHD flow past a linearly accelerated vertical porous plate with variable temperature and also with variable mass diffusion in presence of heat source or sink under the influence of applied transverse magnetic field. The fluid considered here is a gray, absorbing/emitting radiation but a non-scattering medium. At time t > 0, the plate is linearly accelerated with a velocity $u=u_0t$ in its own plane. And at the same time, plate temperature and concentration levels near the plate raised linearly with time t. The dimensionless governing equations involved in the present analysis are solved using the closed analytical method. The velocity, temperature, concentration, skin-friction, the rate or heat transfer and the rate of mass transfer are studied through graphs in terms of different physical parameters like magnetic field parameter (M), radiation parameter (R), Schmidt parameter (Sc), Soret number (So), Heat source parameter (S), Prandtl number (Pr), thermal Grashof number (Gr), mass Grashof number (Gm) and time (t).

A Comparison of the Propagation and Noise Characteristics between Ultrasonic and Electromagnetic Wave for the High Speed Communication of Short Range Telemetry (단거리 텔레메트리용 고속통신을 위한 전자기파 및 초음파의 전파 및 잡음 특성 분석)

  • Choi, Chang-Hyo;Seo, Gang-Do;Park, Hee-Jun;Park, Il-Yong;Cho, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.68-71
    • /
    • 2001
  • This paper has been studied for a comparison of the propagation and noise characteristics between ultrasonic and electromagnetic wave for the high speed communication of the short range telemetry. We analyze the propagation depth of electromagnetic and ultrasonic wave by skin depth effect and by ultrasonic loss ratio. We also studied several effects such as near field effect in electromagnetic wave and Rayleigh scattering noise of ultrasonic wave, etc. We show the experimental results of their propagation loss and modulation experiments in water. The experimental results show that both method is good for the implementation of short range telemetry.

  • PDF