Browse > Article
http://dx.doi.org/10.5806/AST.2017.30.4.159

Effect of particle size of TiO2 and octyl-methoxycinnamate (OMC) content on sun protection factor (SPF)  

Choi, Jaeyeong (Department of Chemistry, Hannam University)
Kim, Suyeon (Department of Chemistry, Hannam University)
Kim, Woonjung (Department of Chemistry, Hannam University)
Eum, Chul Hun (Korea Institute of Geoscience and Mineral Resources)
Lee, Seungho (Department of Chemistry, Hannam University)
Publication Information
Analytical Science and Technology / v.30, no.4, 2017 , pp. 159-166 More about this Journal
Abstract
Exposure to UV light, i.e., UV-A (320-400 nm) or UV-B (290-320 nm) radiation, can cause skin cancer. Titanium dioxide ($TiO_2$) effectively disperses UV light. Therefore, it is used as a physical UV filter in many UV light blockers. Usually, the $TiO_2$ content in commercialized UV blockers is 25 % at most. To block UV-B, a chemical UV blocker, octyl-methoxy cinnamate (OMC) is used. OMC is commonly used in combination with $TiO_2$. In this study, $TiO_2$ and OMC were mixed in different proportions to produce UV blockers with different compositions. Also the changes in the sun protection factor (SPF) based on the composition and $TiO_2$ particle sizes were investigated. In order to analyze the $TiO_2$ particle size, dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) were used. The results showed that the SPF was influenced by the proportion of $TiO_2$ and OMC, where the proportion of $TiO_2$ induced a more significant influence. In addition, changes in the $TiO_2$ particle size based on the proportion of OMC were observed.
Keywords
Titanium dioxide ($TiO_2$); Octyl-methoxy cinnamate (OMC); Sun protection factor (SPF); Asymmetrical flow field-flow fractionation (AF4); Dynamic light scattering (DLS);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ministry of Food and Drug Safety No. 2012-88(2012. 08. 24), Republic of Korea.
2 C. H. Eum, D. Y. Kang, and S. Lee, J. Korean Soc. Environ. Anal., 9(4), 243-249 (2006).
3 E. J. Kim, M. J. Kim, N. R. Im, and S. N. Park, J. Photoch. Photobio. B, 149, 196-203 (2015).   DOI
4 S. Schachermeyer, J. Ashby, M. Kwon, and W. Zhong, J. Chromatogr. A, 1264, 72-79 (2012).   DOI
5 A. Zattoni, D. C. Rambaldi, P. Reschiglian, M. Melucci, S. Krol, A. M. C. Garcia, A. Sanz-Medel, D. Roessner, and C. Johann, J. Chromatogr. A, 1216(52), 9106-9112 (2009).   DOI
6 D. Nesseem, Int. J. Cosmet. Sci., 33(1), 70-79 (2011).   DOI
7 S. Lee, S. Prabhakara Rao, M. H. Moon, and J. Calvin Giddings, Anal. Chem., 68(9), 1545-1549 (1996).   DOI
8 J. Choi, H. D. Kwen, Y. S. Kim, S. H. Choi, and S. Lee, Microchem. J., 117, 34-39 (2014).   DOI
9 D. R. Hayden, A. Imhof, and K. P. Velikov, ACS Appl. Mater. Inter., 8(48), 32655-32660 (2016).   DOI
10 G.-S. Sim, J.-H. Kim, Y. Na, D.-H. Lee, B.-C. Lee, Y.-H. Zhang, and H.-B. Pyo, J. Soc. Cosmet. Sci. Korea, 31(4), 329-335 (2005).
11 B. A. Gilchrest, N. A. Soter, J. S. Stoff, and M. C. Mihm, J. Am. Acad. Dermatol., 5(4), 411-422 (1981).   DOI
12 F. M. Vilela, F. M. Oliveira, F. T. Vicentini, R. Casagrande, W. A. Verri, Jr., T. M. Cunha, and M. J. Fonseca, J. Photoch. Photobio. B, 163, 413-420 (2016).   DOI
13 Y. Yoon, S. Bae, S. An, Y. B. Choe, K. J. Ahn, and I. S. An, Kor. J. Aesthet. Cosmetol., 11(3), 417-426 (2013).
14 D.-C. Shin, J.-T. Lee, Y. Chug, N.-K. Kang, and J.-Y. Yang, Environ. Health Toxicol., 11(1), 1-10 (1996).
15 S. Miksa, D. Lutz, C. Guy, and E. Delamour, Int. J. Cosmet. Sci., 38(6), 541-549 (2016).   DOI
16 J. P. Santos Caetano, A. P. Abarca, M. Guerato, L. Guerra, S. Schalka, D. C. Perez Simao, and R. Vila, Int. J. Cosmet. Sci., 38(6), 576-580 (2016).   DOI
17 N. Serpone, D. Dondi, and A. Albini, Inorg. Chim. Acta, 360(3), 794-802 (2007).   DOI
18 S. K. Jeon, E. J. Kim, J. Lee, and S. Lee, J. Hazard. Mater., 317, 312-318 (2016).   DOI
19 D. Park, H. M. Shahbaz, S. H. Kim, M. Lee, W. Lee, J. W. Oh, D. U. Lee, and J. Park, Int. J. Food Microbiol., 238, 256-264 (2016).   DOI
20 A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllyla, J. Phys. D: Appl. Phys., 38(15), 2564-2570 (2005).   DOI
21 L. A. Baker, L. C. Grosvenor, M. N. R. Ashfold, and V. G. Stavros, Chem. Phys. Lett., 664, 39-43 (2016).   DOI
22 C.-K. Zhoh, H.-J. Kwon, and S.-R. Ahn, Asia J. Beauty Cosmetol., 9(2), 1-8 (2011).
23 A. Samontha, J. Shiowatana, and A. Siripinyanond, Anal. Bioanal. Chem., 399(2), 973-978 (2011).   DOI
24 C. C. Lin and W. J. Lin, Food and Durg Analysis, 19, 1-8 (2011).
25 J. C. Giddings, F. J. F. Yang, and M. N. Myers, Science, 193(4259), 1244-1245 (1976).   DOI
26 J. C. Giddings, 'Characterization of colloid-sized and larger particles by field-flow fractionation', Los Angeles, CA, USA, 156-159 (1988).
27 J. C. Giddings, Science, 260(5113), 1456-1465 (1993).   DOI
28 Martin E. Schimpf, Karin Caldwell, and J. C. Giddings, In 'Chapter 18. Asymmetrical Flow Field-Flow Fractionation', pp 279-294, K. G. Wahlund, Ed., Wiley-Interscience, New York, 2000.
29 Martin E. Schimpf, Karin Caldwell, and J. C. Giddings, In 'Chapter 2. Retention-Normal Mode', pp 31-48, Mark R. Schure, Martin E. Schimpf, and P. D. Schettler, Eds., Wiley-Interscience, New York, 2000.