• Title/Summary/Keyword: skewed l-axial data

Search Result 3, Processing Time 0.015 seconds

New Family of the Exponential Distributions for Modeling Skewed Semicircular Data

  • Kim, Hyoung-Moon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.1
    • /
    • pp.205-220
    • /
    • 2009
  • For modeling skewed semicircular data, we derive new family of the exponential distributions. We extend it to the l-axial exponential distribution by a transformation for modeling any arc of arbitrary length. It is straightforward to generate samples from the f-axial exponential distribution. Asymptotic result reveals two things. The first is that linear exponential distribution can be used to approximate the l-axial exponential distribution. The second is that the l-axial exponential distribution has the asymptotic memoryless property though it doesn't have strict memoryless property. Some trigonometric moments are also derived in closed forms. Maximum likelihood estimation is adopted to estimate model parameters. Some hypotheses tests and confidence intervals are also developed. The Kolmogorov-Smirnov test is adopted for goodness of fit test of the l-axial exponential distribution. We finally obtain a bivariate version of two kinds of the l-axial exponential distributions.

A Projected Exponential Family for Modeling Semicircular Data

  • Kim, Hyoung-Moon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.6
    • /
    • pp.1125-1145
    • /
    • 2010
  • For modeling(skewed) semicircular data, we derive a new exponential family of distributions. We extend it to the l-axial exponential family of distributions by a projection for modeling any arc of arbitrary length. It is straightforward to generate samples from the l-axial exponential family of distributions. Asymptotic result reveals that the linear exponential family of distributions can be used to approximate the l-axial exponential family of distributions. Some trigonometric moments are also derived in closed forms. The maximum likelihood estimation is adopted to estimate model parameters. Some hypotheses tests and confidence intervals are also developed. The Kolmogorov-Smirnov test is adopted for a goodness of t test of the l-axial exponential family of distributions. Samples of orientations are used to demonstrate the proposed model.

Projected Circular and l-Axial Skew-Normal Distributions

  • Seo, Han-Son;Shin, Jong-Kyun;Kim, Hyoung-Moon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.879-891
    • /
    • 2009
  • We developed the projected l-axial skew-normal(LASN) family of distributions for I-axial data. The LASN family of distributions contains the semicircular skew-normal(SCSN) and the circular skew-normal(CSN) families of distributions as special cases. The LASN densities are similar to the wrapped skew-normal densities for the small values of the scale parameter. However CSN densities have more heavy tails than those of the wrapped skew-normal densities on the circle. Furthermore the CSN densities have two modes as the scale parameter increases. The LASN distribution has very convenient mathematical features. We extend the LASN family of distributions to a bivariate case.