• Title/Summary/Keyword: skew copaired Hopf algebra

Search Result 2, Processing Time 0.015 seconds

OPPOSITE SKEW COPAIRED HOPF ALGEBRAS

  • Park, Junseok;Kim, Wansoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.85-101
    • /
    • 2004
  • Let A be a Hopf algebra with a linear form ${\sigma}:k{\rightarrow}A{\otimes}A$, which is convolution invertible, such that ${\sigma}_{21}({\Delta}{\otimes}id){\tau}({\sigma}(1))={\sigma}_{32}(id{\otimes}{\Delta}){\tau}({\sigma}(1))$. We define Hopf algebras, ($A_{\sigma}$, m, u, ${\Delta}_{\sigma}$, ${\varepsilon}$, $S_{\sigma}$). If B and C are opposite skew copaired Hopf algebras and $A=B{\otimes}_kC$ then we find Hopf algebras, ($A_{[{\sigma}]}$, $m_B{\otimes}m_C$, $u_B{\otimes}u_C$, ${\Delta}_{[{\sigma}]}$, ${\varepsilon}B{\otimes}{\varepsilon}_C$, $S_{[{\sigma}]}$). Let H be a finite dimensional commutative Hopf algebra with dual basis $\{h_i\}$ and $\{h_i^*\}$, and let $A=H^{op}{\otimes}H^*$. We show that if we define ${\sigma}:k{\rightarrow}H^{op}{\otimes}H^*$ by ${\sigma}(1)={\sum}h_i{\otimes}h_i^*$ then ($A_{[{\sigma}]}$, $m_A$, $u_A$, ${\Delta}_{[{\sigma}]}$, ${\varepsilon}_A$, $S_{[{\sigma}]}$) is the dual space of Drinfeld double, $D(H)^*$, as Hopf algebra.

  • PDF

SKEW COPAIRED BIALGEBRAS

  • Park, Jun Seok;Cho, Myung Sang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.16 no.1
    • /
    • pp.81-96
    • /
    • 2003
  • Let ${\sigma}:k{\rightarrow}A{\otimes}B$ be a skew copairing on (A, B), where A and B are Hopf algebras of the same dimension n. Skew dual bases of A and B are introduced. If ${\sigma}$ is an invertible skew copairing then we can give a 2-cocycle bilinear form [${\sigma}$] on $A{\otimes}B$ and define a new Hopf algebra.

  • PDF