• Title/Summary/Keyword: size tolerances

Search Result 43, Processing Time 0.023 seconds

Representation of Geometric Tolerances and its Application to Assemblability Checking (기하 공차의 표현 및 조립성 확인에의 응용)

  • 박상호;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.215-223
    • /
    • 1996
  • Every mechanical part is fabricated with the variations in its size and shape, and the allowable range of the variation is specified by the tolerance in the design stage. Geometric tolerances specify the size or the thickness of each shape entity itself or its relative position and orientation with respect to datums while considering their order of precedence. It would be desirable if the assemblability of parts could be verified in the computer when the tolerances on the parts are store together with the geometric model of the parts of an assembly and their assembled state. Therefore, a new method is proposed to represent geometric tolerances and to determine the assemblability. This method determines the assemblability by subdividing the ranges of relative motion between parts until there exists the subdivided regions that do not cause the interference.

  • PDF

A Study on Appropriate Size Tolerances for the Female Shirts Blouse of Stretchable Fabric (신축성소재 셔츠 블라우스의 여유량에 관한 연구)

  • 한진이;조진숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.3
    • /
    • pp.289-300
    • /
    • 2000
  • Stretchable textile materials are getting more widely used in clothing industry. Among others are two obvious reasons which make it so desirable to young female customers, i.e., better confort with motion and more closely fitted silhouette. But these two points cannot get along well always. If a manufacturer try hard to make his products too closely fit, then the products are even less comfortable than made of non-stretchable material. On the other hand, if a stretchable garment are developed to be too comfortable with plenty of size tolerance. it cannot attract customers who are looking for something closely fit. So the study was aimed to investigate appropriate size tolerances.

  • PDF

Quality Control with Tolerance Analysis (공차해석에 기반 한 U-joint 어셈블리 품질관리)

  • Lee, Jang-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.4
    • /
    • pp.243-247
    • /
    • 2010
  • Every products, which made by mass production, is not identical in their size but have variations in some intervals specified by tolerance dimensions. Tolerances play major role in standardization of part and its quality, and also make a huge impact on manufacturing cost. The optimal condition for tolerances is giving the values as loose as possible for low production cost while satisfying quality specification, which usually demand tight control of tolerances. Tolerance analysis is necessary to get an optimal solution for this conflict situation. This paper have studied tolerance analysis for universal joint assembly of vehicle steering system and tried to find useful results of the study for product design and quality control.

A Study on the Optimization of Position Tolerance of Fasteners Considering Process Capability (공정능력을 고려한 체결구 부품의 위치공차 최적화 방법 연구)

  • Lee, Sang-Hyun;Lee, Tae-Gun;Chang, Sung-Ho
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.04a
    • /
    • pp.417-428
    • /
    • 2008
  • Designers have to consider voice of customer, process capability, manufacturing standards & condition, manufacturing method, characteristics of products to decide tolerances. Especially, in case of position of hole and pin, designers have to consider process capability to decide tolerances. The traditional position tolerances used in a drawing are theoretical values which are allocated to position under the worst case assembling condition that both hole and pin are the maximum material condition(MMC). However, When the process capability is high, more exact product size can be produced under stable manufacturing condition. larger clearance of hole and pin can be allocated. In this point of view, manufacturer could increase the yield by allocating larger position tolerance than theoretical position tolerance of hole and pin considering process capability.

  • PDF

A Study on the Optimization of Position Tolerance of Fasteners Considering Process Capability (공정능력을 고려한 체결구 부품의 위치공차 최적화 방법 연구)

  • Lee, Sang-Hyun;Lee, Tae-Geun;Chang, Sung-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.75-85
    • /
    • 2009
  • Designers have to consider voice of customer, process capability, manufacturing standards & condition, manufacturing method and characteristics of products to decide tolerances. Especially, in case of position of hole and pin, designers have to consider process capability to decide tolerances. The traditional position tolerances used in a drawing are theoretical values which are allocated to position under the worst case assembling condition that both hole and pin are the maximum material condition(MMC). However, when the process capability is high, more exact product size can be produced under stable manufacturing condition. Larger clearance of hole and pin can be allocated. In this point of view, manufacturer could increase the yield by allocating larger position tolerance than theoretical position tolerance of hole and pin considering process capability.

Nonlinear Tolerance Allocation for Assembly Components (조립품을 위한 비선형 공차할당)

  • Kim, Kwang-Soo;Choi, Hoo-Gon
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.39-44
    • /
    • 2003
  • As one of many design variables, the role of dimension tolerances is to restrict the amount of size variation in a manufactured feature while ensuring functionality. In this study, a nonlinear integer model has been modeled to allocate the optimal tolerance to each individual feature at a minimum manufacturing cost. While a normal distribution determines statistically worst tolerances with its symmetrical property in many previous tolerance allocation studies, a asymmetrical distribution is more realistic because its mean is not always coincident with a process center. A nonlinear integer model is modeled to allocate the optimal tolerance to a feature based on a beta distribution at a minimum total cost. The total cost as a function of tolerances is defined by machining cost and quality loss. After the convexity of manufacturing cost is checked by the Hessian matrix, the model is solved by the Complex Method. Finally, a numerical example is presented demonstrating successful model implementation for a nonlinear design case.

Mathematical Representation of Geometric Tolerances : Part 1 (기하 공차의 수학적 표현 : 1편)

  • Park, Sangho;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.78-89
    • /
    • 1996
  • Every mechanical component is fabricated with the variations in its size and shape, and the allowable range of the variation is specified by the tolerance in the design stage. Geometric tolerances specify the size or the thickness of each shape entity itself or its relative position and orientation with respect to datums. Since the range of shape variation can be represented by the variation of the coordinate system attached to the shape, the transformation matrix of the coordinate system would mathematically express the range of shape variation if the interval numbers are inserted for the elements of the transformation matrix. For the shape entity specified by the geometric tolerance with reference to datums, its range of variation can be also derived by propagating the transformation matrices composed of interval numbers. The propagation depends upon the order of precedence of datums.

  • PDF

Prediction of the Performance Distributions and Manufacturing Yields of a MEMS Accelerometer (MEMS 가속도계의 성능분포 및 제조수율 예측)

  • Kim, Yong-Il;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.791-798
    • /
    • 2011
  • All mechanical-system parameters have uncertainty, and this uncertainty directly affects system performances and results in a decrease in the manufacturing outputs. In particular, since the size of a MEMS system is extremely small, the manufacturing tolerances of a MEMS system are relatively large when compared to the tolerances of a macro-scale system. High manufacturing tolerances result from an increase in the uncertainty of the system parameters, thereby affecting the performances and manufacturing yields. In this paper, the performance uncertainty of a MEMS accelerometer due to system parameter uncertainty is analyzed by using several uncertainty analysis methods. Finally, the performance distributions and manufacturing yields of the MEMS accelerometer are predicted.

The Effect Of Standard Limits And Fits On The Productivity Of Assembly Robots (표준 Limits 및 Fits가 조립 로보트의 생산성에 미치는 영향)

  • Kim, Sunn-Ho;Knott, Kenneth
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.2
    • /
    • pp.75-86
    • /
    • 1991
  • This paper presents a methodology to enable the tolerances on mating parts of an assembly to be specified and be compatible to the precision of an assembly robot so as to achieve maximum system performance. The measure of performance is defined as the Probability of Successful Assembly (PSA). A typical loose fastener assembly, usually called peg-in-a-hole is investigated. The Geometric Tolerancing System is adopted to represent position tolerances of mating parts. Two models are presented by considering modifiers on a position tolerance, Regardless of Feature Size (RFS) and Maximum Material Condition (MMC). Using these models, it is analyzed how the Standard Limits and Fits recommended by ANSI influence the performance of an assembly robot. For this analysis, the Standard Limits and Fits are transformed to the representation scheme of the Geometric Tolerancing System. Due to low PSAs when the Standard Limits and Fits are taken into account, the effect of chamfers around a hole is also analyzed.

  • PDF

An Analysis of Body Measurement and Apparel Size for Woman's Ready-Made Jacket (여성 기성복 재킷의 치수 분석 - 신체치수와 제품치수의 비교를 중심으로 -)

  • Cho, Youn-Joo;Paek, Kyung-Ja;Lee, Jeong-Ran
    • Fashion & Textile Research Journal
    • /
    • v.6 no.3
    • /
    • pp.347-356
    • /
    • 2004
  • The purpose of this study is to analyze the sizing system and size designation of ready-made jackets for women. We survey the sizing system and size labeling that have been used and presently practiced by the domestic garment industry of ready-made woman's jacket. In addition, 264 tailored jackets are measured for the sake of this study. The jackets are classified into 3 groups(young, missy, and madame) according to the target age of the brand. The result shows that size labeling involves body measurements(85-94-160), size code(55, 66) or simplified letter(S, M, L). However, the correspondence of size information and ease tolerances of jackets is not consistent and each company has its own sizing system. There are significant differences among young, missy, and madame group on the bust girth of apparel in 66size code. The average apparel size piteh measurement distributions(bust girth and hip girth respectively) of young group are 9cm and 13cm in 55 size code, those of missy group are 7 em and 3 cm in 66 size code, and those of madame group are 6cm and 4cm in 77 size code. The ease of bust girth and hip girth in missy group are much more than other groups.