• 제목/요약/키워드: size optimization

검색결과 1,553건 처리시간 0.026초

Optimization of spatial truss towers based on Rao algorithms

  • Grzywinski, Maksym
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.367-378
    • /
    • 2022
  • In this study, combined size and shape optimization of spatial truss tower structures are presented by using new optimization algorithms named Rao-1, and Rao-2. The nodal displacements, allowable stress and buckling for compressive members are taken into account as structural constraints for truss towers. The discrete and continuous design variables are used as design variables for size and shape optimization. To show the efficiency of the proposed optimization algorithm, 25-bar, and 39-bar 3D truss towers are solved for combined size and shape optimization. The 72-bar, and 160-bar 3D truss towers are solved only by size optimization. The optimal results obtained from this study are compared to those given in the literature to illustrate the efficiency and robustness of the proposed algorithm. The structural analysis and the optimization process are coded in MATLAB programming.

압력용기 지지구조물의 구조최적화 연구 (Structural Optimization Study about Support Structure of Pressure Container)

  • 김창식
    • 한국군사과학기술학회지
    • /
    • 제8권2호
    • /
    • pp.22-29
    • /
    • 2005
  • In this study we performed topology optimization and size optimization about support structure of pressure container which is installed in a Common Bed. The optimization study shows that structure weight optimization results can be applied to navy ship. The topology optimization is performed by static load, homogenization and optimality criteria method and size optimization is performed by SOL200 of NASTRAN.

Topology and size optimization of truss structures using an improved crow search algorithm

  • Mashayekhi, Mostafa;Yousefi, Roghayeh
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.779-795
    • /
    • 2021
  • In the recent decades, various optimization algorithms have been considered for the optimization of structures. In this research, a new enhanced algorithm is used for the size and topology optimization of truss structures. This algorithm, which is obtained from the combination of Crow Search Algorithm (CSA) and the Cellular Automata (CA) method, is called CA-CSA method. In the first iteration of the CA-CSA method, some of the best designs of the crow's memory are first selected and then located in the cells of CA. Then, a random cell is selected from CA, and the best design is chosen from the selected cell and its neighborhood; it is considered as a "local superior design" (LSD). In the optimization process, the LSD design is used to modify the CSA method. Numerical examples show that the CA-CSA method is more effective than CSA in the size and topology optimization of the truss structures.

A teaching learning based optimization for truss structures with frequency constraints

  • Dede, Tayfun;Togan, Vedat
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.833-845
    • /
    • 2015
  • Natural frequencies of the structural systems should be far away from the excitation frequency in order to avoid or reduce the destructive effects of dynamic loads on structures. To accomplish this goal, a structural optimization on size and shape has been performed considering frequency constraints. Such an optimization problem has highly nonlinear property. Thus, the quality of the solution is not independent of the optimization technique to be applied. This study presents the performance evaluation of the recently proposed meta-heuristic algorithm called Teaching Learning Based Optimization (TLBO) as an optimization engine in the weight optimization of the truss structures under frequency constraints. Some examples regarding the optimization of trusses on shape and size with frequency constraints are solved. Also, the results obtained are tabulated for comparison. The results demonstrated that the performance of the TLBO is satisfactory. Additionally, TLBO is better than other methods in some cases.

Optimum design of shape and size of truss structures via a new approximation method

  • Ahmadvand, Hosein;Habibi, Alireza
    • Structural Engineering and Mechanics
    • /
    • 제76권6호
    • /
    • pp.799-821
    • /
    • 2020
  • The optimum design of truss structures is one of the significant categories in structural optimization that has widely been applied by researchers. In the present study, new mathematical programming called Consistent Approximation (CONAP) method is utilized for the simultaneous optimization of the size and shape of truss structures. The CONAP algorithm has already been introduced to optimize some structures and functions. In the CONAP algorithm, some important parameters are designed by employing design sensitivities to enhance the capability of the method and its consistency in various optimum design problems, especially structural optimization. The cross-sectional area of the bar elements and the nodal coordinates of the truss are assumed to be the size and shape design variables, respectively. The displacement, allowable stress and the Euler buckling stress are taken as the design constraints for the problem. In the proposed method, the primary optimization problem is replaced with a sequence of explicit sub-problems. Each sub-problem is efficiently solved using the sequential quadratic programming (SQP) algorithm. Several truss structures are designed by employing the CONAP method to illustrate the efficiency of the algorithm for simultaneous shape and size optimization. The optimal solutions are compared with some of the mathematical programming algorithms, the approximation methods and metaheuristic algorithms those reported in the literature. Results demonstrate that the accuracy of the optimization is improved and the convergence rate speeds up.

대차프레임의 중량감소를 위한 형상최적설계에 관한 연구 (A Study on the Shape Optimal Design of a Bogie Frame for the Reduction of its Weight)

  • 조우석;최경호;박정호;안찬우;김현수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.616-619
    • /
    • 2000
  • The optimum design of a structure requires to determine economical member size and shape of a structure which satisfies the design conditions and functions. In this study, it is attempted to minimize a dead weight of the bogie frame. Therefore, shape optimization is performed for a bolster rib at first and then size optimization for the thickness of top and bottom plate. For the efficient reduction of a weight of a bogie frame, various ellipses centered at a centroid of a bolster rib are made and tried. For the shape optimization, a major axis and an eccentricity of an ellipse are chosen as design variables. From the numerical results of shape and size optimization of a bogie frame, it is known that the weight can be reduced up to 12.476 Y4717.21 kg) with displacement and stress constraints.

  • PDF

The Integrated Design Optimization Technique for Spatial Structures

  • Lee, Sang-Jin
    • Architectural research
    • /
    • 제14권1호
    • /
    • pp.19-26
    • /
    • 2012
  • The technique of integrated design optimization is proposed to design spatial structures. Various element technologies such as topology optimization, layout editing and size optimization processes are used in an integrated manner to improve the performance of spatial structures. In order to demonstrate the present technique, a unit spatial structure is optimized and numerical results are described here.

개미군락 최적화 알고리즘을 이용한 진동수 구속조건을 가진 트러스구조물의 크기최적화 (Truss Size Optimization with Frequency Constraints using ACO Algorithm)

  • 이상진;배정은
    • 대한건축학회논문집:구조계
    • /
    • 제35권10호
    • /
    • pp.135-142
    • /
    • 2019
  • Ant colony optimization(ACO) technique is utilized in truss size optimization with frequency constraints. Total weight of truss to be minimized is considered as the objective function and multiple natural frequencies are adopted as constraints. The modified traveling salesman problem(TSP) is adopted and total length of the TSP tour is interpreted as the weight of the structure. The present ACO-based design optimization procedure uses discrete design variables and the penalty function is introduced to enforce design constraints during optimization process. Three numerical examples are carried out to verify the capability of ACO in truss optimization with frequency constraints. From numerical results, the present ACO is a very effective way of finding optimum design of truss structures in free vibration. Finally, we provide the present numerical results as future reference solutions.

구조물의 최대강성 치수최적설계 (Size Optimization Design Based on Maximum Stiffness for Structures)

  • 신수미;박현정
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권1호
    • /
    • pp.65-72
    • /
    • 2009
  • 본 연구는 주어진 부피제약조건 하에서 최대강성을 구현하는 고층 철골 트러스 시스템의 단면치수 재조정 프로세스를 보여준다. 이러한 치수최적설계는 경사도법에 근거한 최적정 방법에 의해 수치적으로 연산된다. 전형적인 치수최적설계에서는 변위나 응력제약조건 하에서 구조물의 최소중량을 구현하지만, 본 연구에서 소개되는 치수최적설계는 이것과 반대의 프로세스를 가진다. 즉, 부피와 같은 재료제약조건 하에서 최대강성을 구현한다. 본 연구는 기존의 치수최적설계방법의 대안으로서 그 의미를 가질 수 있다. 고층 철골트러스 구조시스템의 수치 예제를 통하여 부재 단면치수 재조정 설계가 기존의 최소중량설계와 반대인 최대강성 이산화 치수최적설계를 통하여 적합하게 수행됨이 증명되었다.

밀도법을 이용한 스페이스 트러스 구조물의 초기 형상 설계 (Initial Shape Design of Space Truss Structure using Density Method)

  • 김호수;박영신;양명규;이민호;김재윤
    • 한국공간구조학회논문집
    • /
    • 제10권4호
    • /
    • pp.59-66
    • /
    • 2010
  • 본 연구는 스페이스 트러스 구조물의 초기 형상을 결정하기 위해 밀도법을 이용한 위상최적화 기술을 고려하고자 한다. 대부분의 초기 형상설계는 다양한 최적화 방법을 활용하지 않고 설계자의 경험이나 시행착오적인 방법을 바탕으로 수행되고 있다. 이런 이유로 합리적이고 경제적인 최적화기술이 초기 형상설계에 도입되어야 한다. 따라서 본 연구에서는 스페이스 트러스 구조물을 대상으로 설계영역을 설정하고 위상최적화를 수행하여 최적의 재료분포를 찾은 뒤 크기최적화를 이용하여 최적부재 크기를 찾고자 한다. 이와 같이 밀도법을 이용한 위상 및 크기최적화를 병행하여 수행할 경우 합리적인 스페이스 트러스 구조물의 초기 형상을 도출할 수 있다.

  • PDF