• Title/Summary/Keyword: size of aggregate

Search Result 588, Processing Time 0.027 seconds

A Study on the Basic Property of Mortar as the Grading Distribution of Copper Slag Used as Fine Aggregate (잔골재로 사용한 동슬래그의 입도에 따른 모르타르의 기초적 특성 연구)

  • Lee Jong-Chan;Lee Mun-Hwan;Lee Sea-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.97-100
    • /
    • 2005
  • The purpose of this study is to research the basic property of mortar as the grading distribution of copper slag used as fine aggregate and the results are as follows. The compressive strength of mortar as the size of largest diameter of copper slag granule is the highest when the largest size is in 2.5-5mm, and flow of mortar is in proportion to the size. As the largest size of copper slag particle is under 2.5mm(Type 1) the compressive strength and flow is higher as the big granules is more included than small ones. As the largest size of copper slag granule is under 5mm(Type 2) the compressive strength and flow is similar to situation of Type 1, except compressive strength is higher as the percent of the size of granule in $2.5\~5mm$ is under 35$\%$. F.M.(Fine Modulus), compressive strength and flow is relative each other except the batch with 2.5$\∼$5mm granule size of copper slag.

  • PDF

Analysis of Fundamental Properties of Concrete Using Mix of Coarse Aggregate With Formation Causes (성인이 다른 굵은 골재를 혼합사용한 콘크리트의 기초적 특성 분석)

  • Noh, Sang-Kyun;Kim, Young-Hee;Kim, Jeong-Bin;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Recently, attempts of replacing some of natural aggregate with mix of low quality aggregate are carried out for stable supply of aggregate. However, low quality aggregate such as recycled aggregate produced during the disposal process of construction wastes and by-product aggregate produced by industrial activities has problem of failing to comply to KS Standards. Therefore, we have compared fundamental properties of concrete by using granite crushed aggregate, recycled aggregate, blast furnace and electric arc furnace slag aggregate for effective utilization of lacking aggregate resources. As the result, slump in case of mixed use of aggregate was increased 0~10% compared to single use. Therefore, it is judged to be economically advantageous as it can expect effects in unit quantity or reduction of SP agent. Compressive strength in case of mixed use of aggregate was increased 0~10% compared to single use as it filled internal crevice of concrete with continuous particle size distribution. Accordingly, if we utilize by satisfying standard particle scope through mix of aggregate with different cause of formation in proper ratio, it was possible to confirm utility of mixed aggregate with demonstration of effects of increases of fluidity and compressive strength of concrete.

Fracture Behavior and Crack Growth of Concrete by The Nonlinear Fracture Mechanics (비선형 파괴역학에 의한 콘크리트의 파괴거동과 균열성장에 관한 연구)

  • 배주성;나의균
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.2
    • /
    • pp.81-92
    • /
    • 1990
  • Concrete, a mixed material, has heterogeniety, anisotrophy and nonlinearity. Therefore, in its 'racture analysis, it is more reasonable to evaluate its fracture toughness by applying the concept of 'racture mechanics rather than the strength concept. Up to the present the concepts of fracture mechanics which were applied to concrete have been divided into two main classes. The one is the concept of linear elastic fracture mechanics and the other is the concept of elastic-plastic fracture mechanics. But it has been pointed out that there are many problems and irrationalities in applying the concept of linear elastic fracture mechanics to concrete. In this study, the J -integral method and the COD method mainly used in the analysis of nonlinear fracture mechanics, were introduced and the three point bending test was carried out for investigating the effects of the variation of the maximum aggregate size and notch depth on the fracture behavior and the crack growth of concrete, and the relationships of fracture energy and crack opening displacement. According to the results of this study the more the maximum aggregate size and the notch depth increased, the more the nonlinearity of load-deflection behavior was remarkable. The increase of the coarse aggregate size created the more ductility of concrete. Thus concrete showed the more stable fracture. As for the path of the crack growth, the more the coarse aggregate size increased, the more it was irregulary deviated from the straight line but it was not almost affected by the variation of the notch depth. Also, the fracture energy increased according as the coarse aggregate size increased and the notch depth decreased.

Research on damage of 3D random aggregate concrete model under ultrasonic dynamic loading

  • Wang, Lixiao;Chen, Qidong;Liu, Xin;Zhang, Bin;Shen, Yichen
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 2020
  • Concrete are the most widely used manmade materials for infrastructure construction across the world. These constructions gradually aged and damaged due to long-term use. However, there does not exist an efficient concrete recycling method with low energy consumption. In this study, concrete was regarded as a heterogeneous material composed of coarse aggregate and cement mortar. And the failure mode of concrete under ultrasonic dynamic loading was investigated by finite element (FE) analysis. Simultaneously, a 3D random aggregate concrete model was programmed by APDL and imported into ABAQUS software, and the damage plastic constitutive model was applied to each phase to study the damage law of concrete under dynamic loading. Meanwhile, the dynamic damage process of concrete was numerically simulated, which observed ultrasonic propagating and the concrete crushing behavior. Finally, the FE simulation considering the influence of different aggregate volume and aggregate size was carried out to illustrate the damage level of concrete.

Mechanical and Drying Shrinkage of Concrete Replaced with Recycled Coarse Aggregate with Less than 13mm in Size (13mm이하 순환 굵은골재 치환에 따른 콘크리트의 역학적 특성 및 건조수축)

  • Lee, Sun-Jae;Kim, Sang-Sup;Park, Young-Jun;Han, Dong-Yeop;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.63-64
    • /
    • 2015
  • This study has analyzed mechanical and dry shrinkage properties according to the recycled coarse aggregate by nominal strength actually being widely used at the Remicon companies for the purpose of qualitative improvement of concrete, practical use and examination at various strengths. As a result, although the modulus of elasticity showed a tendency of getting decreased as the replacement ratio of recycled coarse aggregate has increased, the difference was insignificant while the compressive strength showed a tendency of about 3MPa increase in the recycled coarse aggregate replacement ratio of 30% compared to the ratio of 0%. In case of the dry shrinkage length variation ratio, the recycled coarse aggregate replacement ratio of 30% showed a tendency of about 20% shrinkage reduction compared to the ratio of 0%.

  • PDF

Laboratory Experiment to Characterize Thermal Properties of Recycled-Aggregate Backfill (실내시험을 통한 송배전관로 뒤채움재용 순환골재의 열적 특성 평가)

  • Wi, Ji-Hae;Hong, Sung-Yun;Lee, Dae-Soo;Han, Eun-Seon;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1231-1238
    • /
    • 2010
  • Recently, the utilization of recycled aggregates for backfilling a power transmission pipeline trench has been increasing due to the issues of eco-friendly construction and shortage of natural aggregate resource. It is important to investigate the physical and thermal properties of the recycled aggregates that can be used as a backfill material. This study presents the thermal properties of two types of recycled aggregates with various particle size distributions. The thermal properties of the recycled aggregate were measured using the transient hot wire method and the probe method after performing the standard compaction test using an automatic compactor. Similar to silica sand, the thermal resistivity of the recycled aggregates decreased when the water content increased. This study shows that the recycled aggregate can be a promising backfill material substituting for natural aggregate when backfilling the power transmission pipeline trench.

  • PDF

Behavior of reinforced concrete beams filled with demolished concrete lumps

  • Wu, Bo;Xu, Zhe;Ma, Zhongguo John;Liu, Qiongxiang;Liu, Wei
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.411-429
    • /
    • 2011
  • In the past decades, recycling use of demolished concrete was almost limited to the types of recycled coarse aggregate with a size of about 5-40 mm and recycled fine aggregate with a size of about 0-5 mm for concrete structures, and reuse of demolished concrete lumps (DCLs) with a size much larger than that of recycled aggregate, e.g., 50-300 mm, has been limited to roadbed, backfilling materials, or discarded to landfills. Treatment processes of DCLs are much simpler than those of recycled aggregate, leading to less cost and more energy-saving. In the future, the amount of demolished concrete is estimated to be much higher, so reuse of DCLs for concrete structures will become necessary. The objectives of this paper are to document the process of making reinforced concrete beams with DCLs, and to discuss the flexural and shear behaviors of those reinforced DCL beams through an experimental program, which includes three beams filled with DCLs and one conventional beam for investigating the flexural strengths and deformations, and 12 beams filled with DCLs and two conventional beams for investigating the shear strengths and deformations. The authors hope that the proposed concept offers another sustainable solution to the concrete industry.

The effects of limestone powder and fly ash as an addition on fresh, elastic, inelastic and strength properties of self-compacting concrete

  • Hilmioglu, Hayati;Sengul, Cengiz;Ozkul, M. Hulusi
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.93-102
    • /
    • 2022
  • In this study, limestone powder (LS) and fly ash (FA) were used as powder materials in self-compacting concrete (SCC) in increasing quantities in addition to cement, so that the two powders commonly used in the production of SCC could be compared in the same study. Considering the reduction of the maximum aggregate size in SCC, 10 mm or 16 mm was selected as the coarse aggregate size. The properties of fresh concrete were determined by slump flow (including T500 time), V-funnel and J-ring experiments. The experimental results showed that as the amount of both LS and FA increased, the slump flow also increased. The increase in powder material had a negative effect on V-funnel flow times, causing it to increase; however, the increase in FA concretes was smaller compared to LS ones. The increase in the powder content reduced the amount of blockage in the J-ring test for both aggregate sizes. As the hardened concrete properties, the compressive and splitting strengths as well as the modulus of elasticity were determined. Longitudinal and transverse deformations were measured by attaching a special frame to the cylindrical specimens and the values of Poisson's ratio, initiation and critical stresses were obtained. Despite having a similar W/C ratio, all SCC exhibited higher compressive strength than NVC. Compressive strength increased with increasing powder content for both LS and FA; however, the increase of the FA was higher than the LS due to the pozzolanic effect. SCC with a coarse aggregate size of 16 mm showed higher strength than 10 mm for both powders. Similarly, the modulus of elasticity increased with the amount of powder material. Inelastic properties, which are rarely found in the literature for SCC, were determined by measuring the initial and critical stresses. Crack formation in SCC begins under lower stresses (corresponding to lower initial stresses) than in normal concretes, while critical stresses indicate a more brittle behavior by taking higher values.

Long-term Deflection of R/C Beam with Variable Substitution Ratio of Recycled Aggregate (순환골재 치환율에 따른 R/C보의 장기처짐에 관한 연구)

  • Yoon, Seung-Joe;Seo, Soo-Yeon;Lee, Woo- Jin;Kang, Seong-Duk;Kim, Dae-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.37-40
    • /
    • 2006
  • In this paper, long term deflection of RC beam with variable substitution ratio of recycled aggregate is investigated. 6 RC beam specimens are designed using concrete made of coarse aggregate of 25mm size, mix strength of 21MPa, slump of 12cm and air content of $5.0{\pm}1.5%$. A few concrete blocks are made and used for long term loading. The loading and deflection instrumentation are conducted following the process codified in ACI 318-05 code. Test result shows that the deflection of specimens depends on the compressive strength of concrete. And it is concluded that the deflection of RC beam can be predicted like normal beam using ACI formula if certain level of compressive strength is acquired even recycled aggregate is used in making the beam.

  • PDF

A Basic Study on the Recycling of Dredged Sewage Sediment (하수도 준설토 재활용에 관한 기초 연구)

  • Kim, Hong Min;Choi, Yun Jeong;Yoon, Seok-Pyo;Kim, Jun Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.33-37
    • /
    • 2018
  • In order to recycle sewage dredging soil, we analyzed particle size distribution and organic content of dredged sewage sediments. Based on this, it was determined that particles with relatively low organic content of 1.0 mm or more could be recycled as fine aggregate. Although it was inorganic at the size of 5 mm or more, it contained a number of foreign substances other than fine aggregate, which were needed to be removed with a sieve. Since there are volatile suspended solids between 1.0 and 5.0 mm size, they were removed by means of flotation. Fine aggregate was obtained from dredging soil by screening followed with flotation method, and the proportion of fine aggregate obtained in this study was around 38 %.