• Title/Summary/Keyword: size and shape optimization

Search Result 189, Processing Time 0.03 seconds

Effect of Shape of Discharge Port on Hydraulic Performance of Automotive Closed Type Water Pump (자동차 밀폐형 워터펌프의 토출구 형상이 수력성능에 미치는 영향)

  • Heo, Hyung-Seok;Lee, Gee-Soo;Bae, Suk-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.39-47
    • /
    • 2006
  • Recent trend in pursuit of high performance and effectiveness for automotive cooling system has changed the application of material for impeller of automotive water pump from metal to high ability engineering resin, which can achieve optimization of design of impeller geometry and realize lightweight high efficiency water pump. Closed type water pump improves hydraulic loss of fluid through the clearance between volute casing and impeller compared with that of the existing open type water pump(Although closed type is heavier than open type for the same size and same material, adoption of plastics can solve the problem.). In the present study, the characteristics of hydraulic performance of closed type water pump were investigated with respect to the angle between shroud and hub of impeller and the shape of discharge port of volute casing. Performance tests were carried out for 4 cases, that is, for 2 impellers and 2 casings. The modification of shape of only discharge port can enhance the hydraulic performance by 10 percent and the pump efficiency by 4-6 percent.

Structural Analysis and Shape Optimization for Rotor of Turbomolecular Pump Using P-Method (P-기법을 이용한 터보분자펌프 로터의 구조해석 및 형상최적설계)

  • Won, Bo Reum;Jung, Hae Young;Han, Jeong Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1279-1289
    • /
    • 2013
  • In recent times, turbomolecular pumps (TMPs) have been used frequently to generate and maintain high and clean vacuum. Because of the high-speed rotation of the rotor, its structural safety should be treated as the first design concern. This paper presents the structural analysis and optimization of rotor blades of a TMP. To increase the numerical efficiency in the finite element modeling and analysis, the P-method provided in Pro/ENGINEER was used for simulation. The structural responses for several types of rotor blades were investigated, and the effects of the blade angle, blade length, and round size are thoroughly studied for each type of TMP blade. In addition, structural optimization to reduce and even the maximum stress at each stage of the TMP by changing the size of rounds between the blade and the hub was performed very successfully by using the P-method.

3D Digital Design Optimization Process Considering Constructability of Freeform Structure (비정형 구조물의 시공성을 고려한 3차원 디지털 설계 최적화 프로세스)

  • Ryu, Han-Guk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.5
    • /
    • pp.35-43
    • /
    • 2013
  • Nowadays the widely used media in architecture include visualizations, animations and three-dimensional models. 3D digital methods using active CAM(Computer Aided Manufacturing) and CNC(Computerized Numerical Control) imaging have been developed for accurate shape and 3D measurements in freeform buildings. In contrast to a conventional building using auto CAD system and others, the proposed digital optimization method is based on a combination of 3D numerical data and parametric 3D model for design and construction. The objective of this paper is therefore to present digital optimization process for constructability of freeform building. The method can be useful in the effective implementation of an error-proofing process of freeform building during design and construction phase. 3D digital coordinate data can be used effectively to identify correct size of structural and finish members and installation location of each members in construction field. In addition, architects, engineers and contractors can evaluate design, materials, constructability and identify error-proofing opportunities. Other project participants can also include representatives from all levels of management, departments as well as workers and key subcontractors' personnel, if necessary. The 3D digital optimization process is therefore appropriate to serious variations in freeform shape. For future study, the developed digital optimization method is necessary to be carried out to verify the robustness and accuracy for constructability in construction field.

Optimal Design of the Optical Pickup Actuator Coil (광픽업 구동기 코일최적설계)

  • Woo Chul, Kim;Jae Eun, Kim
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1147-1152
    • /
    • 2004
  • The objective of this work is to develop a new design method to find optimal coils, especially the optimal coil configuration of an optical pickup actuator. In designing actuator coils, the developed Lorenz force in the coils along the desired direction should be made as large as possible while forces and torques in other directions should be made as small as possible. The design methodology we are developing is a systematic approach that can generate optimal coil configurations for given permanent magnet configurations. To consider the best coil configuration among all feasible coil configurations, we formulate the design problem as a topology optimization of a coil. The present formulation for coil design is noble in the sense that the existing topology optimization is mainly concerned with the design of yokes and permanent magnets and that the optimization of actuator coils is so far limited within shape or size optimization. Though the present design methodology applies to any problem, the specific design example considered is the design of fine-pattern tracking and focusing coils.

Preliminary Study on Linear Dynamic Response Topology Optimization Using Equivalent Static Loads (등가정하중을 사용한 선형 동적반응 위상최적설계 기초연구)

  • Jang, Hwan-Hak;Lee, Hyun-Ah;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1401-1409
    • /
    • 2009
  • All the forces in the real world act dynamically on structures. Design and analysis should be performed based on the dynamic loads for the safety of structures. Dynamic (transient or vibrational) responses have many peaks in the time domain. Topology optimization, which gives an excellent conceptual design, mainly has been performed with static loads. In topology optimization, the number of design variables is quite large and considering the peaks is fairly costly. Topology optimization in the frequency domain has been performed to consider the dynamic effects; however, it is not sufficient to fully include the dynamic characteristics. In this research, linear dynamic response topology optimization is performed in the time domain. First, the necessity of topology optimization to directly consider the dynamic loads is verified by identifying the relationship between the natural frequency of a structure and the excitation frequency. When the natural frequency of a structure is low, the dynamic characteristics (inertia effect) should be considered. The equivalent static loads (ESLs) method is proposed for linear dynamic response topology optimization. ESLs are made to generate the same response field as that from dynamic loads at each time step of dynamic response analysis. The method was originally developed for size and shape optimizations. The original method is expanded to topology optimization under dynamic loads. At each time step of dynamic analysis, ESLs are calculated and ESLs are used as the external loads in static response topology optimization. The results of topology optimization are used to update the design variables (density of finite elements) and the updated design variables are used in dynamic analysis in a cyclic manner until the convergence criteria are satisfied. The updating rules and convergence criteria in the ESLs method are newly proposed for linear dynamic response topology optimization. The proposed updating rules are the artificial material method and the element elimination method. The artificial material method updates the material property for dynamic analysis at the next cycle using the results of topology optimization. The element elimination method is proposed to remove the element which has low density when static topology optimization is finished. These proposed methods are applied to some examples. The results are discussed in comparison with conventional linear static response topology optimization.

Structural Optimization of the Mobile Harbor Carne Considering Sea State (해상 상태를 고려한 모바일하버용 크레인의 구조최적설계)

  • Lee, Jae-Jun;Lim, Won-Jong;Jeong, Seong-Beom;Jung, Ui-Jin;Park, Gyung-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.27-36
    • /
    • 2012
  • The mobile harbor is a new concept system to solve the problems of a port. These problems are that container ships cannot be anchored at the dock because they have become larger or the waiting times of anchoring the ships are increased due to heavy container traffic. A new system is designed to carry out the loading and unloading of containers between the mobile harbor and the container ship using the mobile harbor crane at sea. The crane plays an important role when transferring the containers. In this research, various types of the mobile harbor crane are proposed and structural optimization for each type of the crane is carried out. The loading conditions consider the rolling and pitching conditions of the unstable sea state and the wind force are considered. The constraints are mainly the regulations made by the Korean Register of Shipping. The structure of the crane is optimized to minimize the mass while various constraints are satisfied.

Adjoint Variable Method Combined with Complex Variable for Structural Design Sensitivity (보조변수법과 복소변수를 연동한 설계 민감도 해석 연구)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.243-250
    • /
    • 2009
  • The adjoint variable method can reduce computation time and save computer resources because it can selectively provide the sensitivity information for the positions that designers wish to measure. However, the adjoint variable method commonly employs exact analytical differentiation with respect to the design variables. It can be cumbersome to precisely differentiate every given type of finite element. This trouble can be overcome only if the numerical differentiation scheme can replace this exact manner of differentiation. But, the numerical differentiation scheme causes of severe inaccuracy due to the perturbation size dilemma. For assuring the accurate sensitivity without any dependency of perturbation size, this paper employs a complex variable that has been mainly used for computational fluid dynamics problems. The adjoint variable method combined with complex variables is applied to obtain the shape and size sensitivity for structural optimization. Numerical examples demonstrate that the proposed method can predict stable sensitivity results and that its accuracy is remarkably superior to traditional sensitivity evaluation methods.

Design Optimization of Valve Support with Enhanced Seismic Performance (내진성능 향상을 위한 밸브지지대 최적형상 설계)

  • Kim, Hyoung Eun;Keum, Dong Yeop;Kim, Dea Jin;Kim, Jun Ho;Hong, Seong Kyeong;Choi, Won Mok;Kim, Sang Yeong;Seok, Chang Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.997-1005
    • /
    • 2015
  • In this study, modal analysis and equivalent static load analysis for valve supports of 26" gas piping in gas stations were conducted and the existing straight and inclined types of valve supports were compared using seismic performance testing. Also, a new valve support shape was suggested by optimizing position of fastener holes, width and thickness of the support, and size of bracket. Improvement in seismic performance by design optimization was verified through equivalent static load analysis. The seismic performance of the newly proposed valve support was greatly improved and the maximum displacement and maximum stress of the seismic load was about 20% lower than those of the existing valve support.

Application of Open Source, Big Data Platform to Optimal Energy Harvester Design (오픈소스 기반 빅데이터 플랫폼의 에너지 하베스터 최적설계 적용 연구)

  • Yu, Eun-seop;Kim, Seok-Chan;Lee, Hanmin;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Recently, as interest in the internet of things has increased, a vibration energy harvester has attracted attention as a power supply method for a wireless sensor. The vibration energy harvester can be divided into piezoelectric types, electromagnetic type and electrostatic type, according to the energy conversion type. The electromagnetic vibration energy harvester has advantages, in terms of output density and design flexibility, compared to other methods. The efficiency of an electromagnetic vibration energy harvester is determined by the shape, size, and spacing of coils and magnets. Generating all the experimental cases is expensive, in terms of time and money. This study proposes a method to perform design optimization of an electromagnetic vibration energy harvester using an open source, big data platform.

Analysis and Design of a Motor Driven Tilt/Telescopic Steering Column for Safety Improvement (안전도를 고려한 전동 틸트/텔레스코픽 조향주의 해석 및 설계)

  • Sin, Mun-Gyun;Hong, Seong-U;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1479-1490
    • /
    • 2000
  • The design process of the motor driven tilt/telescopic steering column is established by axiomatic design approach in conceptual design stage. By selecting independent design variables for improvin g performance of the steering system, each detailed design can be carried out independently. In the detailed design, the safety in crash environment and vibration reduction are considered. An occupant analysis code SAFE(Safety Analysis For occupant crash Environment) is utilized to simulate the body block test. Segments, contact ellipsoids and spring-damper elements are used to model the steering column in SAFE. The model is verified by the result of the body block test. After the model is validated, the energy absorbing components are designed using an orthogonal array. Occupant analyses are performed for the cases of the orthogonal array. Final design is determined for the minimum occupant injury. For vibrational analysis, a finite element model of the steering column is defined for the modal analysis. The model is validated by the vibration experiment. Size and shape variables are selected for the optimization process. An optimization is conducted to minimize the weight subjected to various constraints.