• 제목/요약/키워드: six feature

검색결과 302건 처리시간 0.023초

SOFM 신경회로망을 이용한 한국어 음소 인식 (Korean Phoneme Recognition Using Self-Organizing Feature Map)

  • 전용구;양진우;김순협
    • 한국음향학회지
    • /
    • 제14권2호
    • /
    • pp.101-112
    • /
    • 1995
  • 본 논문에서는 패턴 매칭 방법에 근거하여 인식 단위가 음소인 음소 기반 인식 시스템을 구성하였다. 선택한 신경망 구조는 생물학적 신경망인 코호넨(T. Kohonen)의 SOFM(Self-Organizing Feature Map)으로 패턴 매칭 과정 중 클러스터러(clusterer)로 사용하였다. SOFM 신경망은 신호 공간에 대해서 최적의 국소(局所) 해부적 사상(local topographical mapping)에 의한 자기 조직화 과정을 수행하며, 그 결과 인식 문제에 있어서 상당히 높은 정확도를 나타낸다. 따라서 SOFM 신경망은 음소 인식에도 효과적으로 응용될 수 있다. 또한 음소 인식 시스템의 성능 향상을 위해 K-means클러스터링 알고리즘이 결합된 학습 알고리즘을 제안하였다. 제안된 음소 인식 시스템의 성능을 평가하기 위해 먼저, 인식 대상음소는 모음군 17개, 자음의 경우 파열음9개, 마찰음 3개, 파찰음 3개, 유음 및 비음 4개, 음소의 성질이 다른 종성 7개의 음소군으로 모두 43개의 음소를 대상으로 실험하였으며, 각 음소군에 대한 특징 지도를 구성하여 레이블러(labeler)의 기능을 수행하게 하였다. 화자 종속 인식 실험 결과 $87.2\%$의 인식률을 보였으며 제안한 학습법의 빠른 수렴성과 인식률 향상을 확인하였다.

  • PDF

거리변환법에 의한 한글패턴의 특징분류 (Feature Classification of Hanguel Patterns by Distance Transformation method)

  • 고찬;이대영
    • 한국통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.650-662
    • /
    • 1989
  • 본 논문에서는 한글문자패턴의 새로운 특징추출 및 분류 알고리즘을 제안하였다. 입력된 패턴을 한글기본 6형식으로 분류하고 자소분리를 시행한 후 각 자소별 위치에 따른 굴곡특징점을 추출하였다. 이 특징점에 의해 입력문자의 내용을 정의하고 이를 색인-순차 파일로 구성하였다. 이 파일과 표준사전화일과의 검색으로 인식처리토록 하였다. 간단한 알고리즘으로 인한 처리시간의 단축과 소프트웨어 작성이 용이함을 보였다. 실험의 결과는 입력패턴의 특징추출과 분류의 결과를 나타내준다. 제안된 알고리즘은 문자를 이루는 최소 4각형 안에서 거리변환을 시켜 굴국특성을 추출하여 이들이 갖고 있는 상대 위치 정보를 이용한 것이 특징으로 실험을 통해 97%의 인식율을 나타내었다.

  • PDF

Three-dimensional Face Recognition based on Feature Points Compression and Expansion

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Park, Sang-min;Oh, Duck-kyo;Cho, Hye-young;Jang, Jung-hyuk;Son, Byounghee
    • Journal of Multimedia Information System
    • /
    • 제6권2호
    • /
    • pp.91-98
    • /
    • 2019
  • Many researchers have attempted to recognize three-dimensional faces using feature points extracted from two-dimensional facial photographs. However, due to the limit of flat photographs, it is very difficult to recognize faces rotated more than 15 degrees from original feature points extracted from the photographs. As such, it is difficult to create an algorithm to recognize faces in multiple angles. In this paper, it is proposed a new algorithm to recognize three-dimensional face recognition based on feature points extracted from a flat photograph. This method divides into six feature point vector zones on the face. Then, the vector value is compressed and expanded according to the rotation angle of the face to recognize the feature points of the face in a three-dimensional form. For this purpose, the average of the compressibility and the expansion rate of the face data of 100 persons by angle and face zone were obtained, and the face angle was estimated by calculating the distance between the middle of the forehead and the tail of the eye. As a result, very improved recognition performance was obtained at 30 degrees of rotated face angle.

The Added-Value Metric - A Complementary Performance Measure for Six Sigma and Lean Production

  • Setijono, Djoko;Dahlgaard, Jens J.
    • International Journal of Quality Innovation
    • /
    • 제8권1호
    • /
    • pp.1-14
    • /
    • 2007
  • The Six Sigma and Lean Production methodologies suggest that creating value for customers is the objective of a production process or an organisation. In the production context, "added value" dominates the discussion about the creation of value to customers. However, "added value" is often only defined conceptually or discussed at a strategic level, and the link between added value and customer value has not yet been well conceptualised. Therefore, the purpose of the paper is to develop a methodology to measure added value in order to complement the existing performance measures in Six Sigma and Lean Production by conceptualising the link between customer value and added value. The conceptual link "confirms" that quality, time, and costs are the elements of added value, which are transformed into a metric to express customer value. The implementation of the metric recommends the adoption of Lean (Six) Sigma and Lean Accounting (Activity Based Costing), which thus implies that "leanness" is an important "feature" of added value.

Enhanced SIFT Descriptor Based on Modified Discrete Gaussian-Hermite Moment

  • Kang, Tae-Koo;Zhang, Huazhen;Kim, Dong W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • 제34권4호
    • /
    • pp.572-582
    • /
    • 2012
  • The discrete Gaussian-Hermite moment (DGHM) is a global feature representation method that can be applied to square images. We propose a modified DGHM (MDGHM) method and an MDGHM-based scale-invariant feature transform (MDGHM-SIFT) descriptor. In the MDGHM, we devise a movable mask to represent the local features of a non-square image. The complete set of non-square image features are then represented by the summation of all MDGHMs. We also propose to apply an accumulated MDGHM using multi-order derivatives to obtain distinguishable feature information in the third stage of the SIFT. Finally, we calculate an MDGHM-based magnitude and an MDGHM-based orientation using the accumulated MDGHM. We carry out experiments using the proposed method with six kinds of deformations. The results show that the proposed method can be applied to non-square images without any image truncation and that it significantly outperforms the matching accuracy of other SIFT algorithms.

과도 전류신호를 이용한 냉간 압연기의 판 터짐 검지 시스템 (Strip Rupture Detection System of Cold Rolling Mill using Transient Current Signal)

  • 양승욱;오준석;심민찬;김선진;양보석;이원호
    • 동력기계공학회지
    • /
    • 제14권2호
    • /
    • pp.40-47
    • /
    • 2010
  • This paper proposes a fault detection system to detect the strip rupture in six-high stand Cold Rolling Mills based on transient current signal of an electrical motor. For this work, signal smoothing technique is used to highlight precise feature between normal and fault condition. Subtracting the smoothed signal from the original signal gives the residuals that contains the information related to the normal or faulty condition. Using residual signal, discrete wavelet transform is performed and acquire the signal presenting fault feature well. Also, feature extraction and classification are executed by using PCA, KPCA and SVM. The actual data is acquired from POSCO for validating the proposed method.

근육기반의 특징모델을 이용한 얼굴표정인식에 관한 연구 (Recognition of Facial Expressions Using Muscle-eased Feature Models)

  • 김동수;남기환;한준희;박호식;차영석;최현수;배철수;권오홍;나상동
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 추계종합학술대회
    • /
    • pp.416-419
    • /
    • 1999
  • 얼굴특징들의 추적을 위한 근육을 기반으로 한 특징모델을 사용한다. 그 특징모델은 적은 파라메터와 범위와 방향으로 한정된 변형으로 구성되고, 각 특징점에 관한 검색 공간은 한정되어질 수 있다. 본 논문에서는 6개로 분류한 주요 얼굴표정에 대해 근육의 수축강도로 추정한다. 그 수축 벡터는 얼굴근육모델의 변화량으로부터 얻어지며, 유사도는 _그것들의 벡터와 대표하는 주요한 표정들의 벡터사이로 규정짓고, 얼굴표정들의 측정을 위해 사용된다.

  • PDF

신경 회로망을 이용한 우편번호 인식 (Recognition of Zip-Code using Neural Network)

  • 이래경;김성신
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.365-365
    • /
    • 2000
  • In this paper, we describe the system to recognize the six digit postal number of mails using neural network. Our zip-code recognition system consists of a preprocessing procedure for the original captured image, a segmentation procedure for separating an address block area with a shape, and recognition procedure for the cognition of a postal number. we extract the feature vectors that are the input of a neural network for the recognition process based on an area optimizing and an image thinning processing. The neural network classifies the zip-code in the mail and the recognized zip-code is verified through the zip-code database.

  • PDF

Recognition of Profile Contours of Human Face by Approximation - Recognition

  • Yang, Yun-Mo
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.683-686
    • /
    • 1988
  • In the recognition of similar patterns like profile contours of human faces, feature measure plays important role. We extracted effective and general feature by B-spline approximation. The nodes and vertices of the approximated curve are normalized and used as features. Since the features have both local property of curvature extrema and global property by B-spline approximation, they are superior to those of curvature extrema of the profile contour. For the image data of six sets of 56 persons, some of which are ill-made, averaged accuracy rate of 97.6 % is obtained in recognizing combinational 333 test samples.

  • PDF

Landslide susceptibility assessment using feature selection-based machine learning models

  • Liu, Lei-Lei;Yang, Can;Wang, Xiao-Mi
    • Geomechanics and Engineering
    • /
    • 제25권1호
    • /
    • pp.1-16
    • /
    • 2021
  • Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The large number of inputs or conditioning factors for these models, however, can reduce the computation efficiency and increase the difficulty in collecting data. Feature selection is a good tool to address this problem by selecting the most important features among all factors to reduce the size of the input variables. However, two important questions need to be solved: (1) how do feature selection methods affect the performance of machine learning models? and (2) which feature selection method is the most suitable for a given machine learning model? This paper aims to address these two questions by comparing the predictive performance of 13 feature selection-based machine learning (FS-ML) models and 5 ordinary machine learning models on LSA. First, five commonly used machine learning models (i.e., logistic regression, support vector machine, artificial neural network, Gaussian process and random forest) and six typical feature selection methods in the literature are adopted to constitute the proposed models. Then, fifteen conditioning factors are chosen as input variables and 1,017 landslides are used as recorded data. Next, feature selection methods are used to obtain the importance of the conditioning factors to create feature subsets, based on which 13 FS-ML models are constructed. For each of the machine learning models, a best optimized FS-ML model is selected according to the area under curve value. Finally, five optimal FS-ML models are obtained and applied to the LSA of the studied area. The predictive abilities of the FS-ML models on LSA are verified and compared through the receive operating characteristic curve and statistical indicators such as sensitivity, specificity and accuracy. The results showed that different feature selection methods have different effects on the performance of LSA machine learning models. FS-ML models generally outperform the ordinary machine learning models. The best FS-ML model is the recursive feature elimination (RFE) optimized RF, and RFE is an optimal method for feature selection.