• 제목/요약/키워드: site specific mutagenesis

검색결과 81건 처리시간 0.026초

Site-Directed Saturation Mutagenesis of Yeast Gcn4p at Codon 242

  • Lee, Jae-Yung;Bae, Yu-Byung;Kim, Jung-Ae;Song, Jae-Mahn;Choe, Mu-Hyeon;Kim, Ick-Young;Kim, Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권1호
    • /
    • pp.122-125
    • /
    • 1999
  • Gcn4p, a transcriptional activator protein of the yeast, Sacchromyces cerevisiae, binds to the specific sequence in the promoters of many amino acid biosynthetic genes for general control. The serine residue (Ser 242) of Gcn4p directly contacts the DNA. Here, for inspecting the DNA binding properties and the level of transcriptional activation of Gcn4p, we introduced a polymerase chain reaction (PCR) site-directed saturation mutation library into the Ser 242 site using 2 outside primers and 2 oligonucleotides with its codons fully degenerated. The sequencing analysis of 146 samples revealed the even nucleotide distribution within the experimental error showing 23, 26, 25, and 26% frequency of U, C, A, and G bases, respectively. This method turned out to be a simple, fast, and economical method for constructing a library of all 20 amino acids at specific codon.

  • PDF

Escherichia coli $\gamma$-Glutamylcysteine Synthetase의 아미노산 치환 효과 (Effect of Amino Acid Substitutions of Escherichia Coli $\gamma$-Glutamylcysteine Synthetase)

  • 남용석;김중수;곽준혁;박영인;이세영
    • 미생물학회지
    • /
    • 제29권5호
    • /
    • pp.278-283
    • /
    • 1991
  • Two amino acid residues ($Ala^{494}$ and $Ser^{495}$ of E. coli .gamma.-glutamylcysteine synthetase have been investigated whether they are the site of feedback inhibition by site specific mutagenesis. Single substitution of $serine^{495}$ (S495F), and double substitutions of alanine$^{494}$ and $serine^{495}$ (A494G-S495F) resulted in the inactivation of the .gamma.-glutamylcysteine synthetase activity. Substitution of $alanine^{494}$ with $glycine^{494}$ resulted in a higher level of feedback inhibition. These results suggest that $serine^{495}$ in .gamma.-glutamylcysteine synthetase is required for its catalytic acitvity and $alanine^{494}$ is presumably related to the feeback inhibition site.

  • PDF

Evidence for a Catalytic Role of Glutamic Acid 233 of Yac-1 in Arginine-Specific ADP-Ribosylation of Murine Lymphocyte

  • Kim, Hyun-Ju
    • Journal of Life Science
    • /
    • 제10권1호
    • /
    • pp.20-23
    • /
    • 2000
  • Mono-ADP-ribosylation, catalyzed by ADP-ribosyltransferases, is a post-translational modification of proteins in which the ADP-ribose moiety of NAD is transferred to an acceptor protein. Previously, we have identified and cloned a glycosylphosphatidylinositol-linked ADP-ribosyltransferase (Yac-1) from mouse lymphoma cells. Yac-1 enzyme contains three regions (region I,II,III) similar to those found in several bacterial toxins and vertebrate ADP-ribosyltransferases. Site-directed mutagenesis was performed to verify the role of Glu 233 in region III. Mutants E233Q, E233D and E233A were inactive for ADP-ribosyltransferase activity. Thus Glu 233 in Yac-1 is essential for enzyme activity, suggesting that Glu 233 in Glu-rich motif near the carboxy terminus plays a catalytic role in ADP-ribosyltransferase activity.

The Role of Lys-228 Residue in Horse Liver Alcohol Dehy-drogenase Activity

  • Cho, Sun-Hyoung;Ryu, Ji-Won;Lee, Kang-Man
    • Archives of Pharmacal Research
    • /
    • 제18권2호
    • /
    • pp.100-104
    • /
    • 1995
  • Lys-228 in horse liver alcohol dehydrogenase isoenzyme E(HLADH-E) was mutated to glycineby site-directed mutagenesis. The specific activity of the mutant enzyme was increased about 4-fold nad Michaelis constants for $NAD^+(K_a){\;}and{\;}NADH(K_q)$ increased by about 350-and 50-fold, respectively. The wild-type enzyme and K228TG mutant enzyme were treated with ethylacetimidate. Acetimidylation of the wild-type enzyme increased the activity about 10-fold, but the mutant enzyme ws little affected. These results confirm that Lys-228 residue plays an important role in the activity of the enzyme through forming the hydrogen bond with adenosine ribose of $NAD^+$.

  • PDF

Site-directed Mutagenesis of Cysteine Residues in Phi-class Glutathione S-transferase F3 from Oryza sativa

  • Jo, Hyun-Joo;Lee, Ju-Won;Noh, Jin-Seok;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.4169-4172
    • /
    • 2012
  • To elucidate the roles of cysteine residues in rice Phi-class GST F3, in this study, all three cysteine residues were replaced with alanine by site-directed mutagenesis in order to obtain mutants C22A, C73A and C77A. Three mutant enzymes were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The substitutions of Cys73 and Cys77 residues in OsGSTF3 with alanine did not affect the glutathione conjugation activities, showing non-essentiality of these residues. On the other hand, the substitution of Cys22 residue with alanine resulted in approximately a 60% loss of specific activity toward ethacrynic acid. Moreover, the ${K_m}^{CDNB}$ value of the mutant C22A was approximately 2.2 fold larger than that of the wild type. From these results, the evolutionally conserved cysteine 22 residue seems to participate rather in the structural stability of the active site in OsGSTF3 by stabilizing the electrophilic substrates-binding site's conformation than in the substrate binding directly.

Site-directed Mutagenesis of the Evolutionarily Conserved Tyr8 Residue in Rice Phi-class Glutathione S-transferase F3

  • Jo, Hyun-Joo;Pack, Mi-Jin;Seo, Jin-Young;Lim, Jin-Kyung;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2671-2674
    • /
    • 2013
  • To elucidate the role of the evolutionarily conserved Tyr8 residue in rice Phi-class GSTF3, this amino acid was replaced with alanine and phenylalanine by site-directed mutagenesis, respectively. The replacement of Tyr8 with Ala significantly affected the catalytic activity and the kinetic parameters, whereas the substitutions of Tyr8 with Phe had almost no effect. The Y8A mutant resulted in approximately 90-100% decrease of the specific activity. Moreover, the Y8A mutant resulted approximately in 2-fold increase of $K_m$, approximately 60-80% decrease of $k_{cat}$, and approximately 6.5-fold decrease in $k_{cat}/K_m$. From the pH/log $k_{cat}/K_m$ plot, $pK_a$ values of the GSH in the wild-type enzyme-GSH complex, Y8A-GSH complex and Y8F-GSH complex were estimated to be approximately 6.8, 8.5 and 6.9, respectively. From these results, we suggest that the evolutionarily conserved Tyr8 residue in OsGSTF3 seems to influence the structural stability of the active site of OsGSTF3 rather than directly its catalytic activity.

유전자적중을 위한 상동유전자재조합 기술의 개발

  • 양정희;장석민;나루세겐지;심호섭;김남형;박창식;진동일
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.96-96
    • /
    • 2002
  • 상동유전자 재조합기술을 myostatin 유전자에 적용하기 위해 돼지 골격에 붙어 있는 근육으로부터 RNA를 추출하였고 돼지 Myostain Exon 3 부위의 specific primer를 제작하여 RT-PCR 을 수행 한 후 증폭된 342bp DNA 를 추출하여 T vector 에 ligation한 후 sequencing을 실시하여 돼지 genomic DNA 에서 Myostatin gene 의 Exon 3 부위와 100% match 되는 것을 확인하였다. (omitted)

  • PDF

An Active Site Arginine Residue in Tobacco Acetolactate Synthase

  • Kim, Sung-Ho;Park, En-Joung;Yoon, Sung-Sook;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권12호
    • /
    • pp.1799-1804
    • /
    • 2003
  • Acetolatate synthase(ALS) catalyzes the first common step in the biosynthesis of valine, leucine, isoleucine in plants and microorganisms. ALS is the target of several classes of herbicides, including the sulfonylureas, the imidazolinones, and the triazolopyrimidines. To elucidate the roles of arginine residues in tobacco ALS, chemical modification and site-directed mutagenesis were performed. Recombinant tobacco ALS was expressed in E. coli and purified to homogeneity. The ALS was inactivated by arginine specific reagents, phenylglyoxal and 2,3-butanedione. The rate of inactivation was a function of the concentration of modifier. The inactivation by butanedione was enhanced by borate, and the inactivation was reversible on removal of excess butanedione and borate. The substrate pyruvate and competitive inhibitors fluoropyruvate and phenylpyruvate protected the enzyme against inactivation by both modifiers. The mutation of well-conserved Arg198 of the ALS by Gln abolished the enzymatic activity as well as the binding affinity for cofactor FAD. However, the mutation of R198K did not affect significantly the binding of FAD to the enzyme. Taken together, the results imply that Arg198 is essential for the catalytic activity of the ALS and involved in the binding of FAD, and that the positive charge of the Arg is crucial for the interaction with negatively charged FAD.

Expression of Thiol-Dependent Protector Protein from Yeast Enhances the Resistance of Escherichia coli to Menadione

  • Park, Jeen-Woo;Ahn, Soo-Mi;Kim, Eun-Ju;Lee, Soo-Min
    • BMB Reports
    • /
    • 제29권6호
    • /
    • pp.513-518
    • /
    • 1996
  • A soluble protein from Saccharomyces cerevisiae specifically provides protection against a thiolcontaining oxidation system but not against an oxidation system without thiol. This 25-kDa protein was thus named thiol-dependent protector protein (TPP). The role of TPP in the cellular defense against oxidative stress was investigated in Escherichia coli containing an expression vector with a yeast genomic DNA fragment that encodes TPP (strain YP) and a mutant in which the catalytically essential amino acid in the active site of TPP (Cys-47) has been replaced with alanine by site-directed mutagenesis (strain YPC47A). There was a distinct difference between these two strains in regard to viability, modulation of activities of superoxide dismutase and catalase, and the oxidative damage of DNA upon exposure to menadione. These results suggest that TPP may play a direct role in the cellular defense against oxidative stress by functioning as an antioxidant protein.

  • PDF

$\lambdaP_{R}$ 프로모터 열린복합체 형성에 미치는 DNA melting 부위 염기서열의 영향 (Effect of sequence variations within DNA melting region on the rate of formation of open complexes at $\lambdaP_{R}$ promoter)

  • 정현채;노정혜
    • 미생물학회지
    • /
    • 제28권1호
    • /
    • pp.19-26
    • /
    • 1990
  • To examine the effects of sequence variations near the transcriptional start site on the rate of formation of the open complexes at bacteriophage $\lambda P_{R}$ promoter, two mutant promoters were created by site-specific mutagenesis using synthetic oligonucleotides. Mutant I coatains changes at positions -3 and -4 from TT to CC, thus having a 6-bp long G/C stretch between -10 region and transciptional start site (+1). Mutant II has changes at positions -5 and -6 from GG to AA, thereby having a 9-bp long A/T stretch between positions -11 and -3. Selective filter binding assays were performed to measure the rate of formation of the open complexes between the wild-type or two mutant $P_{R}$ promoters on 664 bp fragments and E. coli RNA polymerase at two temperatures. At 37.deg.C, the wild-type and two mutants showed similar rates for the formation of open complex. The second order rate constant $k_{a}$ and $\tau _{int}$, as determined from the .tau.-plot analysis, were $(6.0\pm0.4)\times10^{6}M^{-1}sec^{-1}$ and $11\pm5$sec, respectively. At 18.deg.C, however, the wild-type and two mutant promoters showed differences in the kinetic parameters. k for the wild-type promoter was (2.2$\pm$0.1)\times 10^{6}M^{-1}sec^{-1}$ and $\tau _{int}$ was 76$\pm$sec. Mutant I and II exhibited differences mainly in the rate of isomerization ($\tau_{int,I}=91\pm$10 sec, int,II=34$\pm$ sec), whereas the second order rate constant $k_{a}$ was similar to the wild type value. This result implies that at $18^{\circ}C$, the isomerization rate is determined by both protein conformational change and DNA melting, which are separable kinetically according to the 3-step mechanism of Roe et al.(1984,1985), and that the base changes affected mainly the rate of DNA melting as predicted.lting as predicted.

  • PDF