• Title/Summary/Keyword: sister chromatid

Search Result 76, Processing Time 0.023 seconds

Effects of Mitomycin C on Sister Chromatid Exchanges in Cultured Human Lympocytes (항암제 Mitomycin C가 배양임파구의 자매염색분체 교환에 미치는 영향)

  • Hwang, In-Dam;Ki, No-Suk;Lee, Jeong-Sang;Kim, Nam-Song;Mun, Tae-Il
    • Journal of Preventive Medicine and Public Health
    • /
    • v.19 no.2 s.20
    • /
    • pp.244-251
    • /
    • 1986
  • Sister chromatid exchanges(SCEs) and cell cycle kinetics were proposed as a sensitive and quantitative assay for mutagenicity and cytotoxicity in short-term cultures of phytohema-gglutinin(PHA)-stimu1ated human 1ymphocytes. Therefore, this study was performed to investigate the relation between the cytotoxic effects and sister chromatid exchanges. The resultes are summarized as follows: 1) The frequency of SCEs per cell are $13.1{\pm}2.8$ in the lower concentration of $6.25{\times}10^{-9}M\;and\;75.8{\pm}8.2$ in the highest concentration of $1.00{\pm}10^{-7}M$. Mitotic index is decreased in the higher concentration of mitomycin C. The result indicates that mitomycin C led to a dose dependent increase in SCE frequency, but decease in mitotic index. 2) Chromosomal analysis was performed on metaphase cells that have divided one, two, and three or more times for cell cycle kinetics by fluorescence-plus-Giemsa(FPG) technique. According to the increased concentration of mitomycin C, the proportion of metaphase cells in the first are profoundly increased but the cells of third division are greatly decreased. 3) The frequency of SCEs per chromosome by chromosomal group are decreased gradually from A group to G group. But relationships between specific chromosomal group and SCE frequency are not found.

  • PDF

Roles of Budding Yeast Hrr25 in Recombination and Sporulation

  • Lee, Min-Su;Joo, Jeong Hwan;Kim, Keunpil
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1198-1203
    • /
    • 2017
  • Hrr25, a casein kinase $1{\delta}/{\varepsilon}$ homolog in budding yeast, is essential to set up mono-orientation of sister kinetochores during meiosis. Hrr25 kinase activity coordinates sister chromatid cohesion via cohesin phosphorylation. Here, we investigated the prophase role of Hrr25 using the auxin-inducible degron system and by ectopic expression of Hrr25 during yeast meiosis. Hrr25 mediates nuclear division in meiosis I but does not affect DNA replication. We also found that initiation of meiotic double-strand breaks as well as joint molecule formation were normal in HRR25-deficient cells. Thus, Hrr25 is essential for termination of meiotic division but not homologous recombination.

Genoprotective Effect of Melatonin Against to the Genotoxicity of Glyphosate on Human Blood Lymphocytes (글라이포세이트의 유전자 독성에 대한 멜라토닌의 유전자 보호 효과)

  • Kim, Jung-Gyu;Choi, Woo-Ik;Lee, Jae-Ho;Choi, In-Jang;Jin, Sang-Chan
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.14 no.2
    • /
    • pp.144-150
    • /
    • 2016
  • Purpose: Glyphosate is a widely used non-selective herbicide. Previous studies have shown that glyphosate has genotoxicity, and that even low-doses of glyphosate can cause DNA damage. Melatonin is a hormone produced and secreted by the pineal gland that is known to be a potent anti-carcinogen, anti-oxidant, and genetic protector. This study was conducted to investigate the genoprotective effect of melatonin against glyphosate in human blood lymphocytes. Methods: Human peripheral blood was obtained from 15 young, healthy volunteers and cultured under four different toxicologic conditions. The four groups consisted of a control group, glyphosate only group (300 ng/mL), glyphosate with low level of melatonin group ($50{\mu}M$), and glyphosate with high level of melatonin group ($200{\mu}M$). The mean Sister Chromatid Exchange (SCE) frequency of each group was then analyzed. Results: Glyphosate exposed groups had a higher mean SCE frequency ($10.33{\pm}2.50$) than the control group ($6.78{\pm}2.31$, p<0.001). Interestingly, the group that received a low-level of melatonin had a lower mean SCE frequency ($8.67{\pm}2.58$) than the glyphosate-only group, while the group that received a high level of melatonin had a much lower mean SCE frequency ($8.06{\pm}2.50$) than the glyphosate-only group. There was statistical significance. Conclusion: Melatonin exerted a potent gene protective effect against the genotoxicity of glyphosate on human blood lymphocytes in a dose-dependent fashion.

Effects of Ethyl methanesuifonate and Ultraviolet light on Induction of the Adaptive Response in Chinese Hamster Ovary and Sarcoma 180 Cells

  • Kim, Gyoo-Cheon;Lee, Dong-Wook;Shin, Eun-Joo;Um, Kyung-Il
    • Environmental Mutagens and Carcinogens
    • /
    • v.16 no.1
    • /
    • pp.19-23
    • /
    • 1996
  • This study was performed by the sister chromatid exchanges (SCEs) and micronuclei (MN) assays to investigate the adaptive response to ultraviolet light (UV) or ethyl methanesulfonate (EMS) in Chinese hamster ovary (CHO) and Sarcoma 180 (S180) cells. The pretreatment with 1 J/m$^2$ UV or 2 mM EMS decreased the frequency of SCEs induced by the treatment with 5 J/m$^2$ UV or 8 mM EMS in CHO cells. The pretreatment with UV (1 or 2 J/m$^2$) or EMS (1, 2 or 3 mM) did not affect the SCEs induced by the treatment with 7 J/m$^2$ UV or 10 mM EMS in S180 cells. On the other hand, the pretreatment with 1 J/m$^2$ UV or 2 mM EMS decreased the frequency of MN induced by the treatment with 5 J/m$^2$ UV or 8 mM EMS in CHO cells. The pretreatment with UV (1 or 2 J/m$^2$) or EMS (1, 2 or 3 mM) did not affect the frequency of MN induced by the treatment with 7 J/m$^2$ UV or 10 mM EMS in S180 cells. It is suggested that there are adaptive responses at the level of chromosome and micronuclei to UV and EMS in CHO cells.

  • PDF

The Effects of Fractionated Radiation on Chromosome Aberrations and Sister Chromatid Exchanges in Rat Lymphocyte Culture (방사선의 반복조사가 랫드 림프구의 염색체이상과 자매염색분체교환에 미치는 영향)

  • 이명구;이광성;조영채
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.88-99
    • /
    • 1998
  • This study was undertaken to find out the bio-effects due to be a radiation fractionated exposure. The experimental animals were divided into the control group and the radiation exposure groups of 20cGy, 40cGy and 80cGy with 220 male Sprague-Dawley rats at 6 weeks old. The radiation exposure groups were fractionated exposed from each 20cGy, 40cGy and 80cGy for every 5 days. The chromosome aberrations, the frequency of SCE, the changes of body weight, hematological values and enzyme activities were investigated for the fractionating exposure times and the time after fractionated exposure. The results were summarized as follows 1. The body weight of the radiation exposure groups were significantly decreased compared with control group according to the increasing fractionated exposure times, and it was the lowest values at the immediately after the end of the fractionating exposed, but it was recovered with the level of control group at 3rd weeks gradually increased 1st week after fractionated exposure. 2. The values of WBC, RBC, Hb and Hct in the radiation exposure groups were significantly decreased than those the control group, but the values of GOT, GPT, ALP, and LDH in the radiation exposure groups were significantly increased than those of the control group. 3. The frequency of chromosomal aberration were increased according to the increasing fractionated exposure dose, and it showed the highest at 5th days after fractionated exposed. The types of chromosomal aberration were occurred such as a numerical abnormality, deletion, break and duplication, it was not recovered immediately and maintained high frequency than the control group. 4. The frequency of SCE were significantly increased according to the increasing fractionated exposure dose in 20cGy, 40cGy and 80cGy groups. But it was recovered the level of control group at 7th days after fractionated exposure. According to the above results, this study could confirm that the frequency of chromosomal aberration and SCE were increased with fractionated exposure dose, the other hand, the changes of body weight, hematological values and enzyme activity values were significantly affected according to the increasing fractionated exposure dose.

  • PDF

Antigenotoxicity of Quercetin and Its Glycosides Against Benzo(a)pyrene-induced Genotoxicity (퀘르세틴 및 퀘르세틴 배당체들의 벤조피렌에 대한 유전독성억제효과)

  • Kim, Jeong-Han;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.42 no.4
    • /
    • pp.414-421
    • /
    • 1998
  • In order to compare the suppressive effect of quercetin and its glycosides, such as quercitrin (quercetin-3-rhamnoside), isoquercitrin (quercetin-3-glucoside), hyperin (querceti n-3-galactoside)and rutin (quercetin-3-rhamnosyl glucoside), on the genotocicity by benzo(a)pyrene(B(a)P), in vitro sister chromatid exchange(SCE) test using mouse spleen lymphocytes and in vivo micronucleus test using mouse peripheral blood were performed. B(a)P-induced SCEs in vitro were slightly decreased by the simultaneous treatment of quercetin and its glycosides, although there was no significant decrease. On the other hand, MNU induced micronucleated reticulocytes(MNRL7s) in vivo were significantly decreased with a dose-dependent manner in all compounds tested. However, there were no differences between quercetin aglycone and glycosides in the suppressive effects under experimental condition of this study. To elucidate, the action mechanism of quercetin aglycone and its glycosides against B(a)P-induced genotoxicity, the assay of DNA binding with B(a)P was studied. Quercetin aglycone and its glycosides inhibited B(a)P metabolism in the presence of S-9 mix and decreased the B(a)P/DNA binding in the calf thymus DNA with S-9 mix. These results suggest that antigenotoxicity of quercetin antiglycosides on B(a)P-induced genotoxicity is due to decrease of DNA binding with B(a)P through the inhibition of metabolism with B(a)P in the calf thymus DNA. Therefore, quercetin and its glycosides may act as an antigenotoxicity agent and may be useful as a chemopreventive agent of polycyclic aromaic hydrocarbons like B(a)P.

  • PDF

Protective Effects of Ginkgo Biloba Leaf Extract(GBE) against 1,2,4-benzenetriol Induced Toxicity in Vitro (Ginkgo biloga 잎 추출물의 1,2,4-benzenetriol에 대한 항산화 효과에 대한 연구)

  • 이영준;김태연;정해원
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.124-130
    • /
    • 2001
  • Ginkgo biliba has been used for bronchitis and asthma in oriental countries and its leaf extract(GBE) contains 24% ginkgoflavone glycoside and 6% terpenoid. Flavonoids and terpenoids are known to have various antioxidant effects such as scavenging of free radicals and chelation of transtional metals. Antioxidant effect of GBE against 1,2,4-benzenetriol(BT), one of toxic metabolites of benzene, was demonstrated throughbsister chromatid exchange(SCE) analysis, single cell gel electrophoresis(SCGE) analysis, DNA cleavage assay and lipid peroxidation production analysis. The means of SCE frequencies at 10, 25 and 50$\mu$M concentration of BT were 7.72, 8.02, 9.22 respectively. In addition of GBE with concentration of 50, 200 and 500$\mu\textrm{g}$/$m\ell$, SCE frequencies were decreased significantly.(p<0.05) According to SCGE analysis, BT induced DNA damage in a dose-dependent manner at concentration of 10 and 50 $\mu$m and the DNA damage induced by BT was significantly protected by GBE(p<0.001). No genotoxicity was observed by GBE treatment alone on DNA cleavage. The effect of BT on lipid peroxidation product, Malondiadehyde(MDA), was increased with concentration of BT(10 and 50 $\mu$M) and reduction in MDA was noted when GBE was added. From above results it is suggested that GBE could protect the cell and DNA from pro-oxidant effect by reactive oxigen species induced by BT.

  • PDF