• Title/Summary/Keyword: sinusoidal permeate flux

Search Result 4, Processing Time 0.016 seconds

Transmembrane Pressure of the Sinusoidal Flux Continuous Operation Mode for the Submerged Flat-sheet Membrane Bioreactor in Coagulant Dosage (침지식 평막 MBR 내 응집제 투여에 따른 사인파형 연속투과 운전 방식의 막간차압)

  • Won, In Hye;Kim, Dae Chun;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • In this study transmembrane pressure (TMP) was measured with respect to operational time in order to estimate fouling of the submerged membrane in the membrane bioreactor(MBR). The microfiltration flat sheet module which has $0.02m^2$ of effective area and $0.15{\mu}m$ nominal pore size was submerged in the activated sludge solution of MLSS 5,000 mg/L. The permeate experiments were carried out simultaneously to compare TMP of the run/stop (R/S) with that of the sinusoidal flux continuous operation (SFCO). TMP for SFCO mode was up to 93% lower than that of R/S mode, and the effect of TMP drop reduced as permeate flux increased. Also, TMP of the SCFO mode was maintained below 40% of the limited operating TMP 55 kPa until the permeate operational time extended to longer than 5 times for the case as the coagulant $FeCl_3$ was dosed into the activated sludge solution with 500 mg/L concentration.

Characteristics of the Sinusoidal Flux Continuous Operation Mode for the Submerged Flat-sheet Membrane Module in Cutting Oil Solution (절삭유 수용액내 침지식 평막 모듈에 대한 사인파형 투과유속 연속운전 방식의 특성)

  • Won, In Hye;Chung, Kun Yong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.646-652
    • /
    • 2015
  • In this study transmembrane pressure (TMP) was measured with respect to permeate flux through the submerged flat sheet membrane for the emulsion and semi-synthetic cutting oil solutions. The effective area and nominal pore size of the used microfiltration membrane were $0.02m^2$ and $0.15{\mu}m$, respectively. The experiments were carried out simultaneously for run/stop (R/S) and sinusoidal flux continuous operation (SFCO) modes using two submerged membrane module in the reservoir. TMP for the case of SFCO was maintained under 60% of R/S, and the effect on TMP drop decreased as the permeate flux increased for emulsion cutting oil solution. Membrane fouling for the semisynthetic solution showing low turbidity was induced lower comparing to the emulsion solution. Also, the effect on TMP drop for SFCO decreased during long-term operation.

Transmembrane Pressure of Flat-sheet Membrane in Emulsion Type Cutting Oil Solution for Symmetric/Asymmetric Sinusoidal Flux Continuous Operation Mode (대칭/비대칭 사인파형 연속운전 방식에 따른 에멀젼형 절삭유 수용액 내 평막의 막간 차압)

  • Won, In Hye;Lee, Hyeon Woo;Gwak, Hyeong Jun;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.320-326
    • /
    • 2015
  • In this study, permeation experiments were carried out using the symmetric and asymmetric sinusoidal flux continuous operation (SFCO) modes for the submerged flat sheet membrane in the 0.5 wt% emulsion type cutting oil solution. The effective area and nominal pore size of the used microfiltration membrane were $0.02m^2$ and $0.15{\mu}m$, respectively. The emulsion cutting oil was rejected over 99% based on turbidity. Transmembrane pressure increased lower as the aeration rates increased. The symmetric SFCO mode was a little more effective than the symmetric SFCO mode in low permeate flux between 10 and $15L/m^2{\cdot}h$. However, the symmetric SFCO mode was shown very effectively in high permeate flux between 25 and $30L/m^2{\cdot}h$.

Transmembrane Pressures with Respect to Backwashing and Sinusoidal Flux Continuous Operation Modes for the Submerged Hollow Fiber Membrane in the Activated Sludge Solution (활성슬러지 수용액 내 침지식 중공사막의 역세척 및 사인파형 연속투과 운전방식에 따른 막간차압)

  • Jeong, Doin;Jung, Seung Hee;Lee, Sohl;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.524-529
    • /
    • 2015
  • In this study transmembrane pressure (TMP) was measured with respect to operational time by applying the sinusoidal flux continuous operation (SFCO) for the hollow fiber membrane. The hollow fiber module which has $100cm^2$ of effective area and $0.45{\mu}m$ nominal pore size was submerged in the activated sludge solution of MLSS 5,000 mg/L. The critical permeate flux was measured as $26.6L/m^2{\cdot}hr$ by the method of continuous flux step change. TMPs of the filtration/relaxation (FR), FR with backwashing (FR/BW) and SFCO modes were measured. The SFCO mode was more effective than FR and FR/BW modes below the critical permeate flux such as 15, 20 and $25L/m^2{\cdot}hr$. However, the FR/BW was confirmed as more effectively fouling controlled mode than SFCO mode above the critical permeate flux.