• Title/Summary/Keyword: sinusoidal encoder

Search Result 16, Processing Time 0.026 seconds

Study on Ultra Precise Position Control of Servomotor using Analog Quadrature Encoder (정현파 엔코더를 이용한 서보전동기의 초정밀 위치제어에 관한 연구)

  • Kim J.C.;Kim J.M.;Kim C.W.;Choi C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.260-264
    • /
    • 2005
  • This paper describes the ultra precise position control of servo motor using sinusoidal encoder based on 'Arcsine Interpolation Method'. First, the paper theoretically analyzes and verify throughout experiments, the relationship between A/D converter input ripple and the total resolution to measure the precise position. Second, this paper presents a way to compensate the total gain and offset error by utilizing a low cost programmable differential amp, by which without any special expensive equipments they are easily on-line tuned and effectively compensated. Lastly, it was compared to servomotor position control characteristics using digital incremental 50,000ppr encoder. The test results show that, with much cheaper sinusoidal encoder, the proposed method exhibits better performance both in position control and ASD applications than the 50,000ppr optical encoder.

  • PDF

Ultra Precise Position Estimation of Servomotor using Analog Quadrature Encoder

  • Kim Ju-Chan;Hwang Seon-Hwan;Kim Jang-Mok;Kim Cheul-U;Choi Cheol
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.139-145
    • /
    • 2006
  • This paper describes the ultra precise position estimation of a servomotor using a sinusoidal encoder based on Arcsine Interpolation Method for the cost reduction of circuit design. The amplitude and offset errors of the sinusoidal encoder output signals, from the encoder itself and analog signal processing procedures, are effectively compensated and on-line tuned by utilizing a low cost programmable differential amplifier without any special expensive equipment. For a theoretical evaluation of the practical resolution of this system, the relationship between the amplitude of ADC(Analog to Digital Converter) input signal errors and the anticipated resolution is also addressed. The performance of the proposed method is verified by comparing it with speed control characteristics of the servomotor driving system using a digital incremental 50,000ppr encoder in the experiments.

Signal Compensation for Analog Rotor Position Errors due to Nonideal Sinusoidal Encoder Signals

  • Hwang, Seon-Hwan;Kim, Dong-Youn;Kim, Jang-Mok;Jang, Do-Hyun
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.82-91
    • /
    • 2014
  • This paper proposes a compensation algorithm for the analog rotor position errors caused by nonideal sinusoidal encoder output signals including offset and gain errors. In order to achieve a much higher resolution, position sensors such as resolvers or incremental encoders can be replaced by sinusoidal encoders. In practice, however, the periodic ripples related to the analog rotor position are generated by the offset and gain errors between the sine and cosine output signals of sinusoidal encoders. In this paper, the effects of offset and gain errors are easily analyzed by applying the concept of a rotating coordinate system based on the dq transformation method. The synchronous d-axis signal component is used directly to detect the amplitude of the offset and gain errors for the proposed compensator. As a result, the offset and gain errors can be well corrected by three integrators located on the synchronous d-axis component. In addition, the proposed algorithm does not require any additional hardware and can be easily implemented by a simple integral operation. The effectiveness of the proposed algorithm is verified through several experimental results.

A Study on Ultra Precise Position Control of Servomotor using Analog Quadrature Encoder (정현파 엔코더를 이용한 서보전동기 초정밀 위치 제어에 관한 연구)

  • Kim, Ji-Chan;Kim, Jang-Mok;Kim, Cheul-U;Choi, Cheol;Cho, Han-Ik
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.237-239
    • /
    • 2005
  • This paper describes the ultra precise position estimation of a servomotor using sinusoidal encoder based on Arcsine Interpolation Method. The amplitude and offset errors of the sinusoidal encoder output signals are effectively compensated and on-line tuned by utilizing a low cost programmable differential amp without any special expensive equipments. To theoretically evaluate the practical resolution of this system, the relationship between the amplitude of A/D converter input signal errors and the anticipated resolution is briefly dealt with. The performance of the proposed method is verified by the experiments, by comparing it with position and speed control characteristics of the servomotor driving system using a digital incremental 50,000ppr encoder.

  • PDF

A Study on Precision Position Measurement Method for Analog Quadrature Encoder (정현파 엔코더를 이용한 정밀위치 측정방법에 관한 연구)

  • Kim Myong-Hwan;Kim Jang-Mok;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.485-490
    • /
    • 2004
  • This paper presents a new interpolation algorithm for measuring high resolution position information which is prepared to a nino servo control motor using analog quadrature encoder. In the past, there are large capacity of memory(ROM or RAM) and two high price and resolution A/D(Analog-to-Digital Converter) for sensing two quadrature signals from a analog sinusoidal encoder interpolation. But high resolution of position from sinusoidal encoder can be obtained by using only small capacity of memory, one A/D converter and comparator. Experimental results show that the proposed algorithm is useful for measuring high resolution position.

DSP Implementation of a Sinusoidal Encoder using linear Hall Sensor (선형 홀센서를 이용한 정현파 엔코더의 DSP 구현)

  • Hwang, Jung-Ho;Chung, Chan-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.298-302
    • /
    • 2012
  • The linear encoder used in the BLAC driving circuit consists usually analog type sensor, and need signal transform from analog sinusoidal to digital one for application in the PWM algorithm that is used to control motor current. When the motor is driven in low speed, it is required many operations and higher quality DSP to convert the hole sensor signal to digital one with enough resolution. In this paper, the another method to convert that signal with enough resolution without calculation of sine function is proposed. This is very simple and have high resolution even if the motor is driving in low speed. To verify the proposed method, BLAC motor is used, and it is proved that the motor is tracking well the reference step signal in the low speed as well as in the high one.

Analysis of the Encoder Composite Signal for a Absolute Position Detection of the Synchronous Motor (동기 전동기의 절대 위치 검출을 위한 엔코더 복합 신호의 분석)

  • Joo, Jae-Hun;Kim, Dong-Hyun;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1018-1024
    • /
    • 2011
  • For the driving of the sinusoidal type permanent magnet synchronous motor with a maximum continuous torque, the 1200 delayed three phase sinusoidal current inputs which matched with the absolute rotor position are needed at the stator coil. Therefore, the detection of a absolute rotor position is required inevitably. And the right angle relationship between stator magnetic field and rotor magnetic field has to be preserved at a stator by this commutation action. The detection of a absolute position for the commutation can be made generally by the output signal analysis of the encoder attached at a motor shaft. The purposes of this study are to design signal processing logic circuits which could detect the absolute position of motor with a modern encoder system and generate the three reference wave for making sinusoidal current input at a stator coil.

The Sinusoidal Ministep Drive Technique

  • Ukakimaparn, P.;Pongswatd, V.;Kummool, S.;Sriratana. W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.466-466
    • /
    • 2000
  • This paper presents the sinusoidal current ministep technique to drive stepping motor. The stepping motor is coupling to the increment encoder to detect the position and speed of the stepping motor. The data from the encoder is decoded to sine and cosine signal and fed to the driver system. The driver system has two loops control, the inner loop and the outer loop. The inner loop is used to control the rotating of the stepping motor and the outer is used to control the speed of the motor. The rotating of the stepping motor is controlled with the sinusoidal signal. The test results of the inner loop control can control the revolution of the stepping motor is smooth and continuously with similar to the DC motor. The outer loop uses to control the speed of the stepping motor with control the DC voltages apply to the driver. The DC voltages that apply to the driver is controlled by the AC-DC converter The test results of the outer loop control, it can control the speed of motor which is provide the any load in the design.

  • PDF

Design and Construction of a Surface Encoder with Dual Sine-Grids

  • Kimura, Akihide;Gao, Wei;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.20-25
    • /
    • 2007
  • This paper describes a second-generation dual sine-grid surface encoder for 2-D position measurements. The surface encoder consisted of a 2-D grid with a 2-D sinusoidal pattern on its surface, and a 2-D angle sensor that detected the 2-D profile of the surface grid The 2-D angle sensor design of previously developed first-generation surface encoders was based on geometric optics. To improve the resolution of the surface encoder, we fabricated a 2-D sine-grid with a pitch of $10{\mu}m$. We also established a new optical model for the second-generation surface encoder that utilizes diffraction and interference to generate its measured values. The 2-D sine-grid was fabricated on a workpiece by an ultra precision lathe with the assistance of a fast tool servo. We then performed a UV-casting process to imprint the sine-grid on a transparent plastic film and constructed an experimental setup to realize the second-generation surface encoder. We conducted tests that demonstrated the feasibility of the proposed surface encoder model.

Analysis of the Encoder Composite Signal for a Absolute Position Detection of the Permanent Magnet Type Synchronous Motor (영구자석형 동기전동기의 절대 위치 검출을 위한 엔코더 복합 신호의 분석)

  • Kim, Jin-Ae;Joo, Jae-Hun;Jeong, Se-Young;Choi, Jung-Keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.180-184
    • /
    • 2007
  • For driving a sinusoidal type permanent magnet synchronous motor with a maximum continuous torque, a $120^0$ delayed three phase sinusoidal current input which matched with the absolute rotor position is needed at a stator coil. So, the detection of absolute rotor position is required inevitably. Thus the right angle relationship between stator magnetic field and rotor magnetic field has to be preserved at a stator by this commutation action. The detection of a absolute position for the commutation can be made generally by the output signal analysis of the encoder attached at a motor shaft. This study purposes to design signal processing logic circuits which can detect the absolute position of motor with a modem encoder system and generate the three reference wave for making sinusoidal current input at a stator coil.

  • PDF