• Title/Summary/Keyword: sintering temperature

Search Result 2,574, Processing Time 0.026 seconds

Synthesis of Fe­Garnet for tile Immobilization of High Level Radioactive Waste (고준위 방사성폐기물의 고정화를 위한 Fe­석류석 합성 연구)

  • ;;;Yudintsev, S. V.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.307-320
    • /
    • 2003
  • Garnet has been considered as a possible matrix for the immobilization of radioactive actinides. It is expected that Fe­based garnet be able to have the high substitution ability of actinide elements because ionic radius of Fe in tetrahedral site is larger than that of Si of Si­based garnet. Accordingly, we synthesized Fe­garnet with the batch composition of $Ca_{2,5}$C $e_{0.5}$Z $r_2$F $e_3$ $O_{12}$ and $Ca_2$CeZrFeF $e_3$ $O_{12}$ and studied their phase relations and properties. Mixed samples were fabricated in pellet forms under the pressure of 400 kg/$\textrm{cm}^2$ and were sintered in the temperature range of 1100∼140$0^{\circ}C$ in atmospheric conditions. Phase identification and chemical composition of synthesized samples were analyzed by XRD and SEM/EDS. In results, where the compounds were sintered at 130$0^{\circ}C$, we optimally obtained Fe­garnets as the main phase, even though some minor phases like perovskite were included. The compositions of Fe­garnets synthesized from the batch compositions of $Ca_{2,5}$C $e_{0.5}$Z $r_2$F $e_3$ $O_{12}$ and $Ca_2$CeZrFeF $e_3$ $O_{12}$, are $Ca_{2.5­3.2}$C $e_{0.3­0.7}$Z $r_{1.8­2.8}$F $e_{1.9­3.2}$ $O_{12}$ and $Ca_{2.2­2.5}$C $e_{0.8­1.0}$Z $r_{1.3­1.6}$ F $e_{0.4­.07}$ F $e_{3­3.2}$ $O_{12}$, respectively. Ca contents were exceeded and Ce contents were exceeded or depleted in 8­coodinated site, comparing to the initial batch composition. These results were caused by the compensation of the difference of ionic radius between Ca and Ce.

Effects of CuO and ${B_2}{O_3}$Additions on Microwave Dielectric Properties of $PbWO_4$-$TiO_2$Ceramic (CuO ${B_2}{O_3}$첨가에 따른 $PbWO_4$-$TiO_2$세라믹스의 마이크로파 유전특성)

  • 최병훈;이경호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1046-1054
    • /
    • 2001
  • Effects of B$_2$O$_3$and CuO addition on the microwave dielectric properties of the PbWO$_4$-TiO$_2$ceramics were investigated in order to use this material as an LTCC material for fabrication of a multilayered RF passive components module. We found that PbWO$_4$could be used as an LTCC material because of its low sintering temperature (8$50^{\circ}C$) and fairy good microwave dielectric properties($\varepsilon$$_{r}$=21.5, Q$\times$f$_{0}$=37200 GHz and $\tau$$_{f}$ =-31 ppm/$^{\circ}C$). In order to stabilize $\tau$$_{f}$ of PbWO$_4$, TiO$_2$was added to the PbWO$_4$and the mixture was sintered at 8$50^{\circ}C$. A near zero $\tau$$_{f}$ value (+0.2 ppm/$^{\circ}C$) was obtained with 8.7 mol% TiO$_2$addition. $\varepsilon$r and Q$\times$f$_{0}$ values were 22.3 and 21400 GHz, respectively. It was believed that the decrement of Q$\times$f$_{0}$ value with TiO$_2$addition was resulted from increasing grain boundary. In order to improve Q$\times$f$_{0}$, various amounts of B$_2$O$_3$and CuO were added to the 0.913PbWO$_4$-0.087TiO$_2$mixture. The optimum amount of CuO was 0.05 wt%. At this addition, the 0.913PbWO$_4$-0.087TiO$_2$ceramic showed $\varepsilon$$_{r}$=23.5, $\tau$$_{f}$ =-2.2ppm/$^{\circ}C$, and Q$\times$f$_{0}$=32900 GHz after sintered at 8$50^{\circ}C$. In case of B$_2$O$_3$addition, the optimum amount range was 1.0~2.5 wt% at which we could obtain following results; $\varepsilon$$_{r}$=20.3~22.1, Q$\times$f$_{0}$=48700~54700 GHz, and $\tau$$_{f}$ =+2.4~+8.2ppm/$^{\circ}C$.

  • PDF

Synthesis of Ceramic Support for Immobilization of Microorganisms Using Fly Ash (석탄회를 이용한 미생물 고정화 세라믹 담체 제조)

  • Shin, Dae-Yong;Han, Sang-Mok;Choi, Shin-Geon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.857-862
    • /
    • 2002
  • Porous ceramic supports with immobilized microorganisms for the water purifier were synthesized by firing green compacts of mixed powder comprising of fly ash, bentonite and an additive of yeast powder at 800∼1,000$^{\circ}C$ for 1h and the pore and mechanical properties of specimens were investigated. The compressive strength was increased in FB (Fly Ash + Bentonite) specimens while pore properties was decreased with increasing the bentonite content and sintering temperature. The compressive strength, bulk density, apparent density, porosity, mean pore size, pore volume and specific surface area of FB specimens at 800∼1,000$^{\circ}C$ were 89.6∼128.9 kgf/$cm^2$, 1.25∼1.43, 1.61∼1.78, 27.2∼62.2%, 7.9∼25.6 ${\mu}m$, 8.9∼$22.2{\times}10^{-5}\;cm^3/g$ and 35.2∼134.3 $m^2/g$, respectively. The pore properties of FBY (FB+yeast powder) specimens were superior to that of FB specimens, however compressive strength was decreased with increasing yeast powder content. The overall properties of 9F1B1Y (9F1B+10% of yeast powder) specimens at 900$^{\circ}C$ for 1 h were 98.7 kgf/$cm^2$, 1.20, 1.67, 68.1%, 48.9 ${\mu}m$, $29.5{\times}10^{-5}\;cm^3/g$ and 152.2 $m^2/g$, respectively. In this study, it was revealed that 9F1B1Y specimen demonstrated better S. saprophyticus adherence properties n their surface pores. Consequently, the microorganisms immobilized on porous ceramic supports showed better water purifying performance with many pores and adequate strength.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.